A passive radiative cooling method has a significant influence on thermal management applications because it can cool without any energy input. This work both experimentally and theoretically demonstrates a multilayer thin film structure with high solar reflectance, which can be applied to passive daytime radiative cooling. The combination of physical vapor deposition and spin-coating prepared the samples, which were also characterized experimentally by spectrometers. On-site measured results show that the emitter can effectively achieve daytime radiative cooling, and the cooling performance can be further improved with the increase of the ambient air temperature. When the emitter is exposed to direct solar radiation (AM1.5) of about 880 W/m2 on a rooftop under dry air conditions, it can achieve an average temperature reduction of about 12.6 °C from the ambient air temperature with nonradiative heat transfer (11 a.m.–1 p.m.). Theoretical simulations reveal that the emitter can still have a certain cooling performance in the presence of significant nonradiative heat exchange and nonideal atmospheric conditions. The influence of ambient air temperature on the cooling performance of the emitter is also theoretically analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.