Gene activation and repression regulated by acetylation and deacetylation represent a paradigm for the function of histone modifications. We provide evidence that, in contrast, histone H2B monoubiquitylation and its deubiquitylation are both involved in gene activation. Substitution of the H2B ubiquitylation site at Lys 123 (K123) lowered transcription of certain genes regulated by the acetylation complex SAGA. Gene-associated H2B ubiquitylation was transient, increasing early during activation, and then decreasing coincident with significant RNA accumulation. We show that Ubp8, a component of the SAGA acetylation complex, is required for SAGA-mediated deubiquitylation of histone H2B in vitro. Loss of Ubp8 in vivo increased both gene-associated and overall cellular levels of ubiquitylated H2B. Deletion of Ubp8 lowered transcription of SAGA-regulated genes, and the severity of this defect was exacerbated by codeletion of the Gcn5 acetyltransferase within SAGA. In addition, disruption of either ubiquitylation or Ubp8-mediated deubiquitylation of H2B resulted in altered levels of gene-associated H3 Lys 4 methylation and Lys 36 methylation, which have both been linked to transcription. These results suggest that the histone H2B ubiquitylation state is dynamic during transcription, and that the sequence of histone modifications helps to control transcription.
Rad6-mediated ubiquitylation of histone H2B at lysine 123 has been linked to transcriptional activation and the regulation of lysine methylation on histone H3. However, how Rad6 and H2B ubiquitylation contribute to the transcription and histone methylation processes is poorly understood. Here, we show that the Paf1 transcription elongation complex and the E3 ligase for Rad6, Bre1, mediate an association of Rad6 with the hyperphosphorylated (elongating) form of RNA polymerase II (Pol II). This association appears to be necessary for the transcriptional activities of Rad6, as deletion of various Paf1 complex members or Bre1 abolishes H2B ubiquitylation (ubH2B) and reduces the recruitment of Rad6 to the promoters and transcribed regions of active genes. Using the inducible GAL1 gene as a model, we find that the recruitment of Rad6 upon activation occurs rapidly and transiently across the gene and coincides precisely with the appearance of Pol II. Significantly, during GAL1 activation in an rtf1 deletion mutant, Rad6 accumulates at the promoter but is absent from the transcribed region. This fact suggests that Rad6 is recruited to promoters independently of the Paf1 complex but then requires this complex for entrance into the coding region of genes in a Pol II-associated manner. In support of a role for Rad6-dependent H2B ubiquitylation in transcription elongation, we find that ubH2B levels are dramatically reduced in strains bearing mutations of the Pol II C-terminal domain (CTD) and abolished by inactivation of Kin28, the serine 5 CTD kinase that promotes the transition from initiation to elongation. Furthermore, synthetic genetic array analysis reveals that the Rad6 complex interacts genetically with a number of known or suspected transcription elongation factors. Finally, we show that Saccharomyces cerevisiae mutants bearing defects in the pathway to H2B ubiquitylation display transcription elongation defects as assayed by 6-azauracil sensitivity. Collectively, our results indicate a role for Rad6 and H2B ubiquitylation during the elongation cycle of transcription and suggest a mechanism by which H3 methylation may be regulated.Histone posttranslational modifications represent a major mechanism by which cells control the structure and function of chromatin (5,22,55). A diversity of histone modifications, such as acetylation, methylation, and ubiquitylation, are known to exist; significantly, many of these modifications have been linked to the regulation of gene activity. Although the precise mechanisms by which histone modifications contribute to the transcription process are not fully known, increasing evidence suggests that they work together in the form of a histone code to regulate the recruitment of chromatin-modulating factors (16,23,51,54).While much progress has been made on the mechanisms of transcriptional activation and repression, much less is known regarding how RNA polymerase II (Pol II) accesses DNA in chromatin and transcribes through it (2,19,29,45,46). Recently, a role for lysine-specific histo...
The LIM homeobox 2 transcription factor Lhx2 is known to control crucial aspects of neural development in various species. However, its function in human neural development is still elusive. Here, we demonstrate that LHX2 plays a critical role in human neural differentiation, using human embryonic stem cells (hESCs) as a model. In hESC-derived neural progenitors (hESC-NPs), LHX2 was found to be expressed before PAX6, and co-expressed with early neural markers. Conditional ectopic expression of LHX2 promoted neural differentiation, whereas disruption of LHX2 expression in hESCs significantly impaired neural differentiation. Furthermore, we have demonstrated that LHX2 regulates neural differentiation at two levels: first, it promotes expression of PAX6 by binding to its active enhancers, and second, it attenuates BMP and WNT signaling by promoting expression of the BMP and WNT antagonist Cerberus 1 gene (CER1), to inhibit non-neural differentiation. These findings indicate that LHX2 regulates the transcription of downstream intrinsic and extrinsic molecules that are essential for early neural differentiation in human.
The treatment of traumatic brain injury (TBI) remains a challenge due to limited knowledge about the mechanisms underlying neuronal regeneration. This current study compared the expression of WNT genes during regeneration of injured cortical neurons. Recombinant WNT3A showed positive effect in promoting neuronal regeneration via in vitro, ex vivo, and in vivo TBI models. Intranasal administration of WNT3A protein to TBI mice increased the number of NeuN+ neurons without affecting GFAP+ glial cells, compared to control mice, as well as retained motor function based on functional behavior analysis. Our findings demonstrated that WNT3A, 8A, 9B, and 10A promote regeneration of injured cortical neurons. Among these WNTs, WNT3A showed the most promising regenerative potential in vivo, ex vivo, and in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.