Metro systems are one of the most important transportation systems in people's lives. Due to the huge amount of energy it consumes every day, highly-efficient operation of a metro system will lead to significant energy savings. In this paper, a new integrated Energy-efficient Operation Methodology (EOM) for metro systems is proposed and validated. Compared with other energy saving methods, EOM does not incur additional cost. In addition, it provides solutions to the frequent disturbance problems in the metro systems. EOM can be divided into two parts: Timetable Optimization (TO) and Compensational Driving Strategy Algorithm (CDSA). First, to get a basic energy-saving effect, a genetic algorithm is used to modify the dwell time of each stop to obtain the most optimal energy-efficient timetable. Then, in order to save additional energy when disturbances happen, a novel CDSA algorithm is formulated and proposed based on the foregoing method. To validate the correctness and effectiveness of the energy-savings possible with EOM, a real case of Shanghai Metro Line One (SMLO) is studied, where EOM was applied. The result shows that a significant amount of energy can be saved by using EOM.
OPEN ACCESSEnergies 2014, 7 7306
This investigation was to study the connections between polymer branch architecture of physical hydrogels and their properties. The bottle-brush-like polymer chains of poly(acrylic acid)-g-poly(ethylene glycol) methyl ether (PAA-g-mPEG) with PAA as backbones and mPEG as branch architecture were synthesized and in situ grafted from silica nanoparticles (SNs) to construct hydrogels cross-linked networks in aqueous solutions. The structural variables to be discussed included molecular weight and molar ratio of branch chains, and new aspects of the formation mechanism of physical hydrogels with branch structure in the absence of organic cross-links were present. The results indicated that the differences of polymer chain architecture could be distinguished via their different interactions that are present by gelation process and mature gel properties, such as gel strength and swelling ratio. The gelation occurred at the critical polymer concentration and molecular weight, respectively, and the inorganic/organic (SNs/PAA-g-mPEG) nanoparticles began to entangle and construct the cross-linking networks afterward. The gel-to-sol transition temperature (T(g-s)) and radii of SNs that were encapsulated by polymer chains as a function of time for chains' disentanglement were monitored according to the observation of the dissolution process, and the molecular weight between two consecutive entanglements (M(e)) was calculated thereafter. This study showed that the introduction of branch chain onto the linear backbone significantly promoted the chain interactions and increased entanglement density, which contributed to the hydrogels' network integrity and rigidity, thus illustrating greater elongation at break and tensile strength than the hydrogels formulated with linear polymer chains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.