Methotrexate (MTX) is a folic acid antagonist, the mechanism of action is to inhibit DNA synthesis, repair and cell proliferation by decreasing the activities of several folate-dependent enzymes. It is widely used as a chemotherapy drug for children and adults with malignant tumors. High-dose methotrexate (HD-MTX) is an effective treatment for extramedullary infiltration and systemic consolidation in children with acute lymphoblastic leukemia (ALL). However, significant toxicity results in most patients treated with HD-MTX, which limits its use. HD-MTX-induced toxicity is heterogeneous, and this heterogeneity may be related to gene polymorphisms in related enzymes of the MTX intracellular metabolic pathway. To gain a deeper understanding of the differences in toxicity induced by HD-MTX in individuals, the present review examines the correlation between HD-MTX-induced toxicity and the gene polymorphisms of related enzymes in the MTX metabolic pathway in ALL. In this review, we conclude that only the association of SLCO1B1 and ARID5B gene polymorphisms with plasma levels of MTX and MTX-related toxicity is clearly described. These results suggest that SLCO1B1 and ARID5B gene polymorphisms should be evaluated before HD-MTX treatment. In addition, considering factors such as age and race, the other exact predictor of MTX induced toxicity in ALL needs to be further determined.
Vascular dysfunction can lead to a variety of fatal diseases, including cardiovascular and cerebrovascular diseases, metabolic syndrome, and cancer. Although a large number of studies have reported the therapeutic effects of natural compounds on vascular-related diseases, ginseng is still the focus of research. Ginseng and its active substances have bioactive effects against different diseases with vascular dysfunction. In this review, we summarized the key molecular mechanisms and signaling pathways of ginseng, its different active ingredients or formula in the prevention and treatment of vascular-related diseases, including cardiac-cerebral vascular diseases, hypertension, diabetes complications, and cancer. Moreover, the bidirectional roles of ginseng in promoting or inhibiting angiogenesis have been highlighted. We systematically teased out the relationship between ginseng and vascular dysfunction, which could provide a basis for the clinical application of ginseng in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.