Steel 30CrMnSiNi2A slices were irradiated by a continuous wave fiber laser beam with the intensity of 14.5W/cm2. Alloy samples with various temperature processes were obtained by changing the laser irradiation time, irradiation times and atmosphere environment. X-ray diffraction, scanning electron microscope, energy dispersive spectrometer and nanoindentation system were employed to characterize their microstructure morphology and mechanical properties. Three layers were observed in the samples fracture, namely oxide film, hard brittle layer and alloy substrate. The hard brittle layer had a higher hardness and a lower toughness compared with the base metal. Referring to the temperature history, we deemed that the surface oxidation and the solid phase transformation were the main factors which changed laser coupling efficiency. The results also illuminated the correlation between the microstructure morphology and the response to laser irradiation of the samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.