Mass customization is the development of items tailored to specific customers, but produced at low unit cost in high-volume. In this context, hybrid manufacturing (HM) combines fused deposition modeling (FDM) and injection molding (IM) to fabricate a single personalized part with minimum manufacturing cost. In this technique, inserts with different physical features are first FDM-fabricated and then IM-overmolded. This study investigated the effect of hybrid FDM-IM production technology, FDM insert geometry on mechanical properties, and micro-structural evolution of Polylactic Acid (PLA) samples. The findings indicated a comparable tensile properties of FDM-IM samples (68.38 MPa) to IM batch (68.95 MPa), emphasizing the potential of HM in the manufacturing industry. Maximum tensile stress of FDM-IM specimens shows an upward trend due to the increased infill density of preforms. In addition, overmolding interface direction results in a big gap for the maximum tensile strengths between half-length series specimens (12.99 MPa to 19.09 MPa) and half-thickness series specimens (53.83 MPa to 59.92 MPa). Furthermore, four joint configurations resulted in different mechanical performances of finished specimens, in which the female cube sample exhibits the highest tensile stress (68.38 MPa), while the batch with male T joint shows a lower value in maximum tensile strength (59.51 MPa), exhibiting a similar tensile performance with the half-thickness 75% batch without joint configuration. This study lays the groundwork for using HM to produce bespoke and mechanically improved parts over FDM alone.
Acrylonitrile Butadiene Styrene (ABS) is a common thermoplastic polymer that has been widely employed in the manufacturing industry due to its impact resistance, tensile strength, and rigidity. Additive manufacturing (AM) is a promising manufacturing technique being used to manufacture products with complex geometries, but it is a slow process producing mechanically inferior products when compared to traditional production processes like injection molding (IM). Thus, our hybrid manufacturing (HM) process combining materials extrusion AM and IM to create a single article was investigated in this study, in which eleven batches of specimens were made and extensively tested. These include the AM, IM, and hybrid manufactured (HYM) samples, in which the HYM samples were made by inserting AM substrates into the IM tool and were varied in infill density of AM preforms and geometries. The HYM samples outperformed AM parts in terms of mechanical performance while retaining customizability dependent on the HYM processing parameters, and the best mechanical performance for HYM samples was found to be comparable to that of IM samples, implying that the overmolding process in HM had primarily improved the mechanical performance of AM products. This work leads to a deeper knowledge of applications to confirm the optimal component fabrication in high design flexibility and mass production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.