Integrated hybrid power systems have become more and more important in recent years. The functioning of medium-temperature proton-conducting solid oxide fuel cell (pSOFC) hybrid system is proposed in this work. The combined system consists of a pSOFC stack, steam methane reformer, compressors, burners, heat exchangers and methanol synthesizing reactor. The excess waste heat of the burner is recovered using heat exchangers. Also, the unutilized hydrogen from SOFC is used for carbon reduction by methanol production. The functioning of configured system is explored by using Matlab/Simulink/Thermolib software. In pSOFC operation, stoichiometric ratio (Sto) of air is maintained 3 and Sto of hydrogen is varied between 1.4 to1.7. Results show that the benefit of carbon reduction depends on methanol production. By using water separator, the methanol production efficiency increases dramatically. In addition, hydrogen transfer membrane is used to increase stack efficiency and control the temperature of stack chamber and reformer. This further improves benefit of carbon reduction. The proposed hybrid system in this work can be used to power huge residential buildings and some factories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.