This study proposes an integrated model for the deployment of multiagent resources for resisting outside threats. The proposed two-stage model applies the divide-and-conquer strategy to solve the resources allocation problem. First, the interactive actions between an external attack and a response agent are modeled as a non-cooperative game, after which the external threat value is derived from the Nash equilibrium. Second, the threat values of all response agents are utilized to compute each agent's Shapley value. Then an acceptable resource allocation of agents based on their expected marginal contribution creates a minimum set of resource deployment costs. The experimental results show that our approach is feasible as a means to mobilize search and rescue resources from a non-affected district and to improve relief efforts against earthquake damage. The Shapley value allocation approach proposed in this study; the percentage of resources allocation of districts is closer to death rate of each district than the proportional division of resources.
An effective method is required to determine the amount and priority for the deployment of suppliers for multiple manufacturing processes, particularly when the available budget for each manufacturing process is limited. In this study, we propose an integrated approach for supplier assessment that consists of two game theory models which are designed to recommend manufacturers on how best to choose suppliers given budgetary limitations. In the first model, the interactive behaviors between the key factors representing the manufacturer and the supplier are modeled and analyzed as a two-player and zero-sum game, after which the Supplier Power Value (SPV) is derived from the pure or mixed strategy Nash equilibrium. In the second model, 12 SPVs are used to compute a Shapley value for each supplier, in terms of the thresholds of the majority levels in one manufacturing process. The Shapley values are then applied to create an allocated set of limited manufacturing orders for suppliers. The experimental results present that the manufacturer can use our approach to quantitatively evaluate the suppliers and easily allocate suppliers within one manufacturing process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.