BackgroundPatients with end-stage renal disease (ESRD) exhibit a premature aging phenotype of the immune system. Nevertheless, the etiology and impact of these changes in ESRD patients remain unknown.ResultsCompared to healthy individuals, ESRD patients exhibit accelerated immunosenescence in both T cell and monocyte compartments, characterized by a dramatic reduction in naïve CD4+ and CD8+ T cell numbers but increase in CD8+ TEMRA cell and proinflammatory monocyte numbers. Notably, within ESRD patients, aging-related immune changes positively correlated not only with increasing age but also with longer dialysis vintage. In multivariable-adjusted logistic regression models, the combination of high terminally differentiated CD8+ T cell level and high intermediate monocyte level, as a composite predictive immunophenotype, was independently associated with prevalent coronary artery disease as well as cardiovascular disease, after adjustment for age, sex, systemic inflammation and presence of diabetes. Levels of terminally differentiated CD8+ T cells also positively correlated with the level of uremic toxin p-cresyl sulfate.ConclusionsAging-associated adaptive and innate immune changes are aggravated in ESRD and are associated with cardiovascular diseases. For the first time, our study demonstrates the potential link between immunosenescence in ESRD and duration of exposure to the uremic milieu.Electronic supplementary materialThe online version of this article (10.1186/s12979-018-0131-x) contains supplementary material, which is available to authorized users.
Background
Lupus nephritis (LN) is one of the most severe complications of SLE patients. We aim to validate urinary ALCAM as a biomarker in predicting renal disease histpathology in a Chinese lupus cohort.
Methods
In this cross-sectional study, a total of 256 patients and controls were recruited. Urinary levels of ALCAM were determined by ELISA. Renal histopathology was reviewed by an experienced renal pathologist.
Results
Urinary ALCAM levels were significantly increased in active LN patients when compared to active SLE patients without renal involvement (p < 0.001), inactive LN patients (p = 0.023), inactive SLE patients without renal involvement (p < 0.001), and healthy controls (p < 0.001). Correlation analysis revealed a positive correlation between urinary ALCAM and general disease activity—SLEDAI score (r = 0.487, p < 0.001), as well as renal disease activity—rSLEDAI (r = 0.552, p < 0.001) and SLICC RAS (r = 0.584, p < 0.001). Urinary ALCAM also correlated with lab parameters including 24-h urine protein, hemoglobin, and complement 3. Moreover, urinary ALCAM levels were significantly increased in class III and IV (proliferative) LN as compared to those in class V (membranous) LN. It outperformed conventional biomarkers (anti-dsDNA antibody, C3, C4, proteinuria) in discriminating the two groups of LN. On renal histopathology, urinary ALCAM levels correlated positively with activity index (r = 0.405, p < 0.001) but not chronicity index (r = 0.079, p = 0.448).
Conclusion
Urinary ALCAM is a potential biomarker for predicting renal pathology activity in LN and may serve as a valuable surrogate marker of renal histopathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.