A fully inkjet-printed strain sensor based on carbon nanotubes (CNTs) was fabricated in this study for microstrain and microcrack detection. Carbon nanotubes and silver films were used as the sensing layer and conductive layer, respectively. Inkjet-printed CNTs easily undergo agglomeration due to van der Waals forces between CNTs, resulting in uneven films. The uniformity of CNT film affects the electrical and mechanical properties. Multi-pass printing and pattern rotation provided precise quantities of sensing materials, enabling the realization of uniform CNT films and stable resistance. Three strain sensors printed eight-layer CNT film by unidirectional printing, rotated by 180° and 90° were compared. The low density on one side of eight-layer CNT film by unidirectional printing results in more disconnection and poor connectivity with the silver film, thereby, significantly increasing the resistance. For 180° rotation eight-layer strain sensors, lower sensitivity and smaller measured range were found because strain was applied to the uneven CNT film resulting in non-uniform strain distribution. Lower resistance and better strain sensitivity was obtained for eight-layer strain sensor with 90° rotation because of uniform film. Given the uniform surface morphology and saturated sheet resistance of the 20-layer CNT film, the strain performance of the 20-layer CNT strain sensor was also examined. Excluding the permanent destruction of the first strain, 0.76% and 1.05% responses were obtained for the 8- and 20-layer strain sensors under strain between 0% and 3128 µε, respectively, which demonstrates the high reproducibility and recoverability of the sensor. The gauge factor (GF) of 20-layer strain sensor was found to be 2.77 under strain from 71 to 3128 µε, which is higher than eight-layer strain sensor (GF = 1.93) due to the uniform surface morphology and stable resistance. The strain sensors exhibited a highly linear and reversible behavior under strain of 71 to 3128 µε, so that the microstrain level could be clearly distinguished. The technology of the fully inkjet-printed CNT-based microstrain sensor provides high reproducibility, stability, and rapid hardness detection.
This paper presents a series-fed two-dipole antenna, fabricated on a liquid crystal polymer (LCP) substrate using inkjet-printing technology. The radio frequency characteristics of inkjet-printing silver film onto an LCP substrate are studied using the microstrip line. The proposed antenna consists of two modified dipole elements of distinct lengths: a modified ground plane and a balun filter yielding a wide bandwidth with bandpass responses. The proposed antenna can be used at frequency band of 26-33 GHz. The bending behaviors of the microstrip line and antenna are also measured. Inkjet printing on LCP substrates provides a low-cost, compact, and flexible packaging solution that can be used in future communication technology. Index Terms-Antenna, balun filter, bending, inkjet printing, liquid crystal polymer (LCP).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.