Background Transposable elements (TEs) are a significant component of eukaryotic genomes and play essential roles in genome evolution. Mounting evidence indicates that TEs are highly transcribed in early embryo development and contribute to distinct biological functions and tissue morphology. Results We examine the epigenetic dynamics of mouse TEs during the development of five tissues: intestine, liver, lung, stomach, and kidney. We found that TEs are associated with over 20% of open chromatin regions during development. Close to half of these accessible TEs are only activated in a single tissue and a specific developmental stage. Most accessible TEs are rodent-specific. Across these five tissues, 453 accessible TEs are found to create the transcription start sites of downstream genes in mouse, including 117 protein-coding genes and 144 lincRNA genes, 93.7% of which are mouse-specific. Species-specific TE-derived transcription start sites are found to drive the expression of tissue-specific genes and change their tissue-specific expression patterns during evolution. Conclusion Our results suggest that TE insertions increase the regulatory potential of the genome, and some TEs have been domesticated to become a crucial component of gene and regulate tissue-specific expression during mouse tissue development.
Studies from global loss‐of‐function mutants suggest that alternative NF‐κB downstream of NF‐κB inducing kinase (NIK) is a cell‐intrinsic negative regulator of osteogenesis. However, the interpretation of the osteoblast and/or osteocyte contribution to the bone phenotype is complicated by simultaneous osteoclast defects in these models. Therefore, we turned to a transgenic mouse model to investigate the direct role of NIK in the osteolineage. Osx‐Cre;NT3 animals (NT3‐Cre +), which bear a constitutively active NIK allele (NT3) driven by Osx‐Cre, were compared with their Cre‐negative, Control (Ctrl) littermates. NT3‐Cre + mice had elevated serum P1NP and CTX levels. Despite this high turnover state, µCT showed that constitutive activation of NIK resulted in a net increase in basal bone mass in both cortical and cancellous compartments. Furthermore, NT3‐Cre + mice exhibited a greater anabolic response following mechanical loading compared with controls. We next performed RNA‐Seq on nonloaded and loaded tibias to elucidate possible mechanisms underlying the increased bone anabolism seen in NT3‐Cre + mice. Hierarchical clustering revealed two main transcriptional programs: one loading‐responsive and the other NT3 transgene‐driven. Gene ontology (GO) analysis indicated a distinct upregulation of receptor, kinase, and growth factor activities including Wnts, as well as a calcium‐response signature in NT3‐Cre + limbs. The promoters of these GO‐term associated genes, including many known to be bone‐anabolic, were highly enriched for multiple κB recognition elements (κB‐RE) relative to the background frequency in the genome. The loading response in NT3‐Cre + mice substantially overlapped (>90%) with Ctrl. Surprisingly, control animals had 10‐fold more DEGs in response to loading. However, most top DEGs shared between genotypes had a high incidence of multiple κB‐RE in their promoters. Therefore, both transcriptional programs (loading‐responsive and NT3 transgene‐driven) are modulated by NF‐κB. Our studies uncover a previously unrecognized role for NF‐κB in the promotion of both basal and mechanically stimulated bone formation. © 2019 American Society for Bone and Mineral Research.
Assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) is a technique widely used to investigate genome-wide chromatin accessibility. The recently published Omni-ATAC-seq protocol substantially improves the signal/noise ratio and reduces the input cell number. High-quality data are critical to ensure accurate analysis. Several tools have been developed for assessing sequencing quality and insertion size distribution for ATAC-seq data; however, key quality control (QC) metrics have not yet been established to accurately determine the quality of ATAC-seq data. Here, we optimized the analysis strategy for ATAC-seq and defined a series of QC metrics for ATAC-seq data, including reads under peak ratio (RUPr), background (BG), promoter enrichment (ProEn), subsampling enrichment (SubEn), and other measurements. We incorporated these QC tests into our recently developed ATAC-seq Integrative Analysis Package (AIAP) to provide a complete ATAC-seq analysis system, including quality assurance, improved peak calling, and downstream differential analysis. We demonstrated a significant improvement of sensitivity (20%–60%) in both peak calling and differential analysis by processing paired-end ATAC-seq datasets using AIAP. AIAP is compiled into Docker/Singularity, and it can be executed by one command line to generate a comprehensive QC report. We used ENCODE ATAC-seq data to benchmark and generate QC recommendations, and developed qATACViewer for the user-friendly interaction with the QC report. The software, source code, and documentation of AIAP are freely available at https://github.com/Zhang-lab/ATAC-seq_QC_analysis.
. CC-BY-NC-ND 4.0 International license It is made available under a was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.The copyright holder for this preprint (which . http://dx.doi.org/10.1101/338350 doi: bioRxiv preprint first posted online Jun. 4, 2018; 3 Nitrogen-containing bisphosphonates (N-BPs) are the standard treatment for osteoporosis and several other bone diseases 11,12 . Certain N-BPs (pamidronate (Aredia®), zoledronate (Zometa®)) are also routinely prescribed to prevent skeletal complications in patients with multiple myeloma and with bone metastases from other malignancies, including breast and prostate cancer 13 . However, because N-BPs cause rare yet serious side-effects, such as atypical fractures and osteonecrosis of the jaw, many patients avoid taking them [5][6][7]11 , causing the number of prescriptions to plummet over 50% in the last decade 7,14 . Thus, there is a sizeable and growing need to better understand the genetic factors that might underlie the onand off-target clinical effects of the N-BPs.A goal of personalized medicine is to identify biomarkers that underlie drug responsiveness. In the case of the N-BPs, it can be said that there are limited personalization options owing to the limited number of genes implicated in the mechanism of action of N-BPs on bone. was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.The copyright holder for this preprint (which . http://dx.doi.org/10.1101/338350 doi: bioRxiv preprint first posted online Jun. 4, 2018; 4 understanding of the molecular mechanisms by which N-BPs regulate the major bone cell types would be improved by further studies.To provide insight into the mechanism(s) of N-BPs action, we performed a genetic screen to identify human genes required for the anti-proliferative effects of N-BPs (Fig. 1a) Other genes identified in our alendronate haploid screen (SNTG1, PLCL1, and EPHB1) have been previously connected to N-BP action on bone cells and/or human bone diseases [28][29][30] . To systematically evaluate all "hits" we identified (i.e., the 185 genes with FDR p-value < 0.05, see Fig. 1b), we developed a computational approach utilizing a molecular biology-optimized version of PubMed (currently at ~27M records) to assess to what extent our haploid screen identified genes were cited as relevant to human studies that focus on bone (see "PubMed citation analysis" in the Methods section for details). We asked whether our alendronate haploid screen hits were mentioned in publications co-occurring with the term "bone" vs. other tissues along with identifiers of genome-wide screening, namely the strings, "GWAS" or "genome-wide" (Fig. 1c). Indeed, our alendronate screen hits were enriched in publications co-mentioning "bone" and genome-wide studies compared to control gene sets (Fig. 1d, Supplementary Table 1b). This . CC-BY-NC-ND 4.0 International license It is made available under a was not peer-reviewed...
Nitrogen-containing bisphosphonates (N-BPs), such as alendronate, are the most widely prescribed medications for diseases involving bone, with nearly 200 million prescriptions written annually. Recently, widespread use of N-BPs has been challenged due to the risk of rare but traumatic side effects such as atypical femoral fracture (AFF) and osteonecrosis of the jaw (ONJ). N-BPs bind to and inhibit farnesyl diphosphate synthase, resulting in defects in protein prenylation. Yet, it remains poorly understood what other cellular factors might allow N-BPs to exert their pharmacological effects. Here, we performed genome-wide studies in cells and patients to identify the poorly characterized gene, ATRAID. Loss of ATRAID function results in selective resistance to N-BP–mediated loss of cell viability and the prevention of alendronate-mediated inhibition of prenylation. ATRAID is required for alendronate inhibition of osteoclast function, and ATRAID-deficient mice have impaired therapeutic responses to alendronate in both postmenopausal and senile (old age) osteoporosis models. Last, we performed exome sequencing on patients taking N-BPs that suffered ONJ or an AFF. ATRAID is one of three genes that contain rare nonsynonymous coding variants in patients with ONJ or an AFF that is also differentially expressed in poor outcome groups of patients treated with N-BPs. We functionally validated this patient variation in ATRAID as conferring cellular hypersensitivity to N-BPs. Our work adds key insight into the mechanistic action of N-BPs and the processes that might underlie differential responsiveness to N-BPs in people.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.