Severe infection causes marked derangements in the flow of glutamine among organs, and these changes are accompanied by significant alterations in regional cell membrane transport and intracellular glutamine metabolism. Skeletal muscle, the major repository of glutamine, exhibits a twofold increase in glutamine release during infection, which is associated with a significant increase in endogenous glutamine biosynthesis. Despite an increase in glutamine synthetase activity in skeletal muscle, the intracellular glutamine pool becomes depleted, indicating that release rates exceed rates of synthesis. Simultaneously, the circulating pool of glutamine does not increase, indicating accelerated uptake by other organs. The liver appears to be the major organ of glutamine uptake in severe infection; studies in endotoxemic rodents have shown net hepatic glutamine uptake to increase by as much as 8- to 10-fold. This increase is due partially to increases in liver blood flow, but also to a three- to fourfold increase in hepatocyte System N activity in the liver. Cytokines and glucocorticoids mediate the increased uptake of glutamine by the liver in septic states as well as other compounds. Sepsis does not appear to induce an increase in System N gene expression, indicating that the increase in hepatic glutamine transport observed during severe infection is probably regulated at the protein level. The bowel displays a decrease in glutamine utilization during sepsis, a response that may be related to the decrease in circulating insulin-like growth factor-1 (IGF-1) levels that is characteristic of sepsis. Recent studies suggest that IGF-1 has a direct effect on stimulating glutamine transport across the gut lumen and thus may represent a therapeutic avenue for improving gut nutrition during severe infection. The cells of the immune system (lymphocytes, macrophages) are also major glutamine consumers during inflammatory states in which cell proliferation is increased. Under these conditions, glutamine availability can become rate limiting for key cell functions, such as phagocytosis and antibody production.
BackgroundDespite advances in the understanding of diabetic retinopathy, the nature and time course of molecular changes in the retina with diabetes are incompletely described. This study characterized the functional and molecular phenotype of the retina with increasing durations of diabetes.ResultsUsing the streptozotocin-induced rat model of diabetes, levels of retinal permeability, caspase activity, and gene expression were examined after 1 and 3 months of diabetes. Gene expression changes were identified by whole genome microarray and confirmed by qPCR in the same set of animals as used in the microarray analyses and subsequently validated in independent sets of animals. Increased levels of vascular permeability and caspase-3 activity were observed at 3 months of diabetes, but not 1 month. Significantly more and larger magnitude gene expression changes were observed after 3 months than after 1 month of diabetes. Quantitative PCR validation of selected genes related to inflammation, microvasculature and neuronal function confirmed gene expression changes in multiple independent sets of animals.ConclusionThese changes in permeability, apoptosis, and gene expression provide further evidence of progressive retinal malfunction with increasing duration of diabetes. The specific gene expression changes confirmed in multiple sets of animals indicate that pro-inflammatory, anti-vascular barrier, and neurodegenerative changes occur in tandem with functional increases in apoptosis and vascular permeability. These responses are shared with the clinically documented inflammatory response in diabetic retinopathy suggesting that this model may be used to test anti-inflammatory therapeutics.
Nanophthalmos is a rare, potentially devastating eye condition characterized by small eyes with relatively normal anatomy, a high hyperopic refractive error, and frequent association with angle closure glaucoma and vision loss. The condition constitutes the extreme of hyperopia or farsightedness, a common refractive error that is associated with strabismus and amblyopia in children. NNO1 was the first mapped nanophthalmos locus. We used combined pooled exome sequencing and strong linkage data in the large family used to map this locus to identify a canonical splice site alteration upstream of the last exon of the gene encoding myelin regulatory factor ( MYRF c.3376-1G>A), a membrane bound transcription factor that undergoes autoproteolytic cleavage for nuclear localization. This variant produced a stable RNA transcript, leading to a frameshift mutation p.Gly1126Valfs*31 in the C-terminus of the protein. In addition, we identified an early truncating MYRF frameshift mutation, c.769dupC (p.S264QfsX74), in a patient with extreme axial hyperopia and syndromic features. Myrf conditional knockout mice (CKO) developed depigmentation of the retinal pigment epithelium (RPE) and retinal degeneration supporting a role of this gene in retinal and RPE development. Furthermore, we demonstrated the reduced expression of Tmem98 , another known nanophthalmos gene, in Myrf CKO mice, and the physical interaction of MYRF with TMEM98. Our study establishes MYRF as a nanophthalmos gene and uncovers a new pathway for eye growth and development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.