Hepatocellular carcinoma (HCC) is the fifth common cancer in the world and it mainly occurs in men. Glycine N-methyltransferase (GNMT) participates in one-carbon metabolism and affects DNA methylation by regulating the ratio of S-adenosylmethionine to S-adenosylhomocystine. Previously, we described that the expression of GNMT was diminished in human HCC. Here, we showed that 50% (3/6) male and 100% (7/7) female Gnmt2/2 mice developed HCC, and their mean ages of HCC development were 17 and 16.5 months, respectively. In addition, 42.9% (3/7) of female Gnmt2/2 mice had hemangioma. Wnt reporter assay demonstrated that Gnmt is a negative regulator for canonical Wnt signaling pathway. Beta-catenin, cyclin D1 and c-Myc, genes related to Wnt pathway, were upregulated in the liver tissues from both 11 weeks and HCC stage of Gnmt2/2 mice. Furthermore, global DNA hypomethylation and aberrant expression of DNA methyltransferases 1 and 3b were found in the early and late stages of HCC development. Hierarchical cluster analysis of 6,023 transcripts from microarray data found that gene expression patterns of HCC tumors from male and female Gnmt2/2 mice were distinctively different. Real-time PCR confirmed that Gadd45a, Pak1, Mapk3 and Dsup3 genes of mitogen-activated protein kinase (MAPK) pathway were activated in Gnmt2/2 mice, especially in the female mice. Therefore, GNMT is a tumor suppressor gene for liver cancer, and it is associated with gender disparity in liver cancer susceptibility. '
Glycine N-methyltransferase (GNMT) is a tumor suppressor for hepatocellular carcinoma (HCC). High rates of Gnmt knockout mice developed HCC. Epigenetic alteration and dysregulation of several pathways including wingless-type MMTV integration site (Wnt), mitogen-activated protein kinase (MAPK) and Janus kinase and signal transducer and activator of transcription (JAK-STAT) are associated with HCC development in Gnmt knockout mice. We hypothesized that GNMT may regulate signal transduction through interacting with other proteins directly. In this report, we identified a mammalian target of rapamycin (mTOR) inhibitor (DEP domain containing MTOR-interacting protein [DEPDC6/DEPTOR]) as a GNMT-binding protein by using yeast two-hybrid screening. Fluorescence resonance energy transfer assay demonstrated that the C-terminal half of GNMT interact with the PSD-95/Dlg1/ZO-1 (PDZ) domain of DEPDC6/DEPTOR. Immunohistochemical staining showed that 27.5% (14/51) of HCC patients had higher expression levels of DEPDC6/DEPTOR in the tumorous tissues than in tumor-adjacent tissues, especially among HCC patients with hepatitis B viral infection (odds ratio 10.3, 95% confidence interval [CI] 1.05-11.3) or patients with poor prognosis (death hazard ratio 4.51, 95% CI 1.60-12.7). In terms of molecular mechanism, knockdown of DEPDC6/DEPTOR expression in HuH-7 cells caused S6K and 4E-BP activation, but suppressed Akt. Overexpression of DEPDC6/DEPTOR activated Akt and increased survival of HCC cells. Overexpression of GNMT caused activation of mTOR/raptor downstream signaling and delayed G2/M cell cycle progression, which altogether resulted in cellular senescence. Furthermore, GNMT reduced proliferation of HuH-7 cells and sensitized them to rapamycin treatment both in vitro and in vivo. In conclusion, GNMT regulates HCC growth in part through interacting with DEPDC6/DEPTOR and modulating mTOR/raptor signaling pathway. Both GNMT and DEPDC6/DEPTOR are potential targets for developing therapeutics for HCC.
Purpose: Glycine N-methyltransferase (GNMT) affects genetic stability by regulating DNA methylation and interacting with environmental carcinogens. In a previous study, we showed that GNMT acts as a susceptibility gene for hepatocellular carcinoma. Here, we report on our efforts to characterize the haplotypes, loss of heterozygosity (LOH), and expression levels of the GNMT in prostate cancer. Experimental Design: Peripheral blood mononuclear cell DNA collected from 326 prostate cancer patients and 327 age-matched controls was used to determine GNMT haplotypes. Luciferase reporter constructs were used to compare the promoter activity of different GNMT haplotypes. GNMT LOH rates in tumorous specimens were investigated via a comparison with peripheral blood mononuclear cell genotypes. Immunohistochemical staining was used to analyze GNMT expression in tissue specimens collected from 5 normal individuals, 33 benign prostatic hyperplasia patients, and 45 prostate cancer patients. Results: Three major GNMT haplotypes were identified in 92% of the participants: A, 16GAs/ DEL/C (58%); B, 10GAs/INS/C (19.9%); and C, 10GAs/INS/T (14.5%). Haplotype C carriers had significantly lower risk for prostate cancer compared with individuals with haplotype A (odds ratio, 0.68; 95% confidence interval, 0.48-0.95). Results from a phenotypic analysis showed that haplotype C exhibited the highest promoter activity (P < 0.05, ANOVA test). In addition, 36.4% (8 of 22) of the prostatic tumor tissues had LOH of the GNMT gene. Immunohistochemical staining results showed abundant GNMTexpression in normal prostatic and benign prostatic hyperplasia tissues, whereas it was diminished in 82.2% (37 of 45) of the prostate cancer tissues. Conclusions: Our findings suggest that GNMT is a tumor susceptibility gene for prostate cancer.
The Taiwanese CRF07_BC strains had 97% full-length sequence homology with the prototype from mainland China. CRF07_BC was first introduced into the southern region in 2002 and then spread to other regions in Taiwan in 2004.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.