We conducted a genome-wide association study of generalized vitiligo in the Chinese Han population by genotyping 1,117 cases and 1,429 controls. The 34 most promising SNPs were carried forward for replication in samples from individuals of the Chinese Han (5,910 cases and 9,916 controls) and Chinese Uygur (713 cases and 824 controls) populations. We identified two independent association signals within the major histocompatibility complex (MHC) region (rs11966200, Pcombined=1.48x10(-48), OR=1.90; rs9468925, Pcombined=2.21x10(-33), OR=0.74). Further analyses suggested that the strong association at rs11966200 might reflect the reported association of the HLA-A*3001, HLA-B*1302, HLA-C*0602 and HLA-DRB1*0701 alleles and that the association at rs9468925 might represent a previously unknown HLA susceptibility allele. We also identified one previously undescribed risk locus at 6q27 (rs2236313, Pcombined=9.72x10(-17), OR=1.20), which contains three genes: RNASET2, FGFR1OP and CCR6. Our study provides new insights into the genetic basis of vitiligo.
Our findings provided novel insights into the genetic architecture of SLE and emphasized the contribution of multiple variants of modest effect. Further study focused on PRKCB, 8p11.21, should advance our understanding on the pathogenesis of SLE.
The present study demonstrates a global profile of gene expression during endothelial capillary morphogenesis, and the results provide us much information about the molecular mechanisms of angiogenesis, with which further evaluation of individual genes can be conducted.
In this paper, a photo-excited metasurface (MS) based on hybrid patterned photoconductive silicon (Si) structures was proposed in the terahertz (THz) region, which can realize the tunable reflective circular polarization (CP) conversion and beam deflection effect at two frequencies independently. The unit cell of the proposed MS consists of a metal circular-ring (CR), Si ellipse-shaped-patch (ESP) and circular-double-split-ring (CDSR) structure, a middle dielectric substrate, and a bottom metal ground plane. By altering the external infrared-beam pumping power, it is possible to modify the electric conductivity of both the Si ESP and CDSR components. By varying the conductivity of the Si array in this manner, the proposed MS can achieve a reflective CP conversion efficiency that ranges from 0% to 96.6% at a lower frequency of 0.65 THz, and from 0% to 89.3% at a higher frequency of 1.37 THz. Furthermore, the corresponding modulation depth of this MS is as high as 96.6% and 89.3% at two distinct and independent frequencies, respectively. Moreover, at the lower and higher frequencies, the 2π phase shift can also be achieved by respectively rotating the oriented angle (αi) of the Si ESP and CDSR structures. Finally, an MS supercell is constructed for the reflective CP beam deflection, and the efficiency is dynamically tuned from 0% to 99% at the two independent frequencies. Due to its excellent photo-excited response, the proposed MS may find potential applications in active functional THz wavefront devices, such as modulators, switches, and deflectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.