BackgroundMagnetic resonance imaging (MRI) cardiac gated phase contrast (PC) cine techniques have non-invasively shown the effect of the cardiac pulse on cerebrospinal fluid (CSF) movement. Echo planar imaging (EPI) has shown CSF movement as influenced by both cardiac pulsation and respiration. Previously, it has not been possible to visualize CSF movement in response to respiration non-invasively. The present study was undertaken to do so.MethodsThe effect of respiration on CSF movement was investigated using a non-contrast time-spatial labeling inversion pulse (Time-SLIP) with balanced steady-state free precession (bSSFP) readout. CSF movement was observed in the intracranial compartment in response to respirations in ten normal volunteers. To elucidate the respiration effect, the acquisition was triggered at the beginning of deep inhalation, deep exhalation and breath holding.ResultsBy employing this respiration-induced spin labeling bSSFP cine method, we were able to visualize CSF movement induced by respiratory excursions. CSF moved cephalad (16.4 ± 7.7 mm) during deep inhalation and caudad (11.6 ± 3.0 mm) during deep exhalation in the prepontine cisternal area. Small but rapid cephalad (3.0 ± 0.4 mm) and caudad (3.0 ± 0.5 mm) movement was observed in the same region during breath holding and is thought to reflect cardiac pulsations.ConclusionsThe Time-SLIP bSSFP cine technique allows for non-invasive visualization of CSF movement associated with respiration to a degree not previously reported.
The ever-growing overlap between stretchable electronic devices and wearable healthcare applications is igniting the discovery of novel biocompatible and skin-like materials for human-friendly stretchable electronics fabrication. Amongst all potential candidates, hydrogels with excellent biocompatibility and mechanical features close to human tissues are constituting a promising troop for realizing healthcare-oriented electronic functionalities. In this work, based on biocompatible and stretchable hydrogels, a simple paradigm to prototype stretchable electronics with an embedded three-dimensional (3D) helical conductive layout is proposed. Thanks to the 3D helical structure, the hydrogel electronics present satisfactory mechanical and electrical robustness under stretch. In addition, reusability of stretchable electronics is realized with the proposed scenario benefiting from the swelling property of hydrogel. Although losing water would induce structure shrinkage of the hydrogel network and further undermine the function of hydrogel in various applications, the worn-out hydrogel electronics can be reused by simply casting it in water. Through such a rehydration procedure, the dehydrated hydrogel can absorb water from the surrounding and then the hydrogel electronics can achieve resilience in mechanical stretchability and electronic functionality. Also, the ability to reflect pressure and strain changes has revealed the hydrogel electronics to be promising for advanced wearable sensing applications.
The brain's vasculature is likely to be subjected to the same age-related physiological and anatomical changes affecting the rest of the cardiovascular system. Since aerobic fitness is known to alleviate both cognitive and volumetric losses in the brain, it is important to investigate some of the possible mechanisms underlying these beneficial changes. Here we investigated the role that estimated cardiorespiratory fitness (eCRF) plays in determining the relationship between aging and cerebral blood flow (CBF) in a group of older adults (ages 55–85). Using arterial spin labeling to quantify CBF, we found that blood flow in the gray matter was positively correlated with eCRF and negatively correlated with age. Subsequent analyses revealed that eCRF fully mediated the effects of age on CBF in the gray matter, but not in the white matter. Additionally, regional measures of CBF were related to regional measures of brain volume. These findings provide evidence that age-related effects on cerebrovascular health and perfusion in older adults are largely influenced by their eCRF levels.
).q RSNA, 2015 Purpose:To prospectively evaluate the capability of amide proton transfer-weighted chemical exchange saturation transfer magnetic resonance (MR) imaging for characterization of thoracic lesions. Materials and Methods:The institutional review board approved this study, and written informed consent was obtained from 21 patients (13 men and eight women; mean age, 72 years) prior to enrollment. Each patient underwent chemical exchange saturation transfer MR imaging by using respiratorysynchronized half-Fourier fast spin-echo imaging after a series of magnetization transfer pulses. Next, a magnetization transfer ratio asymmetry at 3.5 ppm map was computationally generated. Pathology examinations resulted in a diagnosis of 13 malignant and eight benign thoracic lesions. The malignant lesions were further diagnosed as being nine lung cancers, comprising six adenocarcinomas, three squamous cell carcinomas, and four other thoracic malignancies. The Student t test was used to evaluate the capability of magnetization transfer ratio asymmetry (at 3.5 ppm), as assessed by means of region of interest measurements, for differentiating benign and malignant lesions, lung cancers and other thoracic lesions, and adenocarcinomas and squamous cell carcinomas. Results:Magnetization transfer ratio asymmetry (at 3.5 ppm) was significantly higher for malignant tumors (mean 6 standard deviation, 3.56% 6 3.01) than for benign lesions (0.33% 6 0.38, P = .008). It was also significantly higher for other thoracic malignancies (6.71% 6 3.46) than for lung cancer (2.16% 6 1.41, P = .005) and for adenocarcinoma (2.88% 6 1.13) than for squamous cell carcinoma (0.71% 6 0.17, P = .02). Conclusion:Amide proton transfer-weighted chemical exchange saturation transfer MR imaging allows characterization of thoracic lesions.q RSNA, 2015
Aging is accompanied by a general deterioration of fluid cognitive processes and a reduction in resting cerebral blood flow (CBF). While the two phenomena have been observed independently, it is uncertain whether individual differences in cerebral blood flow are reliably associated with cognitive functioning in older adults. Furthermore, previous studies have concentrated primarily on gross measures of cognition and global gray matter CBF, leaving open the possibility that perfusion of specific brain regions may relate differentially to distinct cognitive domains. The present study sought to provide a more focused treatment of CBF and cognitive function in the context of aging by investigating the relationships among aging, spatial memory and resting hippocampal blood flow, both between and within younger and older adult groups. Blood flow was quantified using a novel Flow-Enhanced Signal Intensity (FENSI) technique which provides a localized, functionallyrelevant measure of volumetric flow across a given unit area. As expected, we found that aging was associated with poorer spatial memory and reduced resting CBF. Moreover, hippocampal blood flow was positively correlated with spatial memory performance in the older adult group, suggesting that increased blood flow to the hippocampus is associated with superior memory performance in older adults. These results demonstrate a region-specific CBF-cognition relationship and thereby offer new insight into the complex connection between the aging brain and behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.