Ability of online adaptive replanning is desirable to correct for interfraction anatomic changes. A full-scope replanning/reoptimization with the current planning techniques takes too long to be practical. A novel online replanning strategy to correct for interfraction anatomic changes in real time is presented. The scheme consists of three steps: (1) rapidly delineating targets and organs at risk on the computed tomography of the day by modifying original planning contours using robust tools in a semiautomatic manner, (2) online segment aperture morphing (SAM) (adjusting beam/ segment apertures) by applying the spatial relationship between the planning target contour and the apertures to the new target contour, and (3) performing segment weight optimization (SWO) for the new apertures if necessary. The entire scheme was tested for direct-aperture-based IMRT on representative prostate and abdomen cases. Dose volume histograms obtained with the online scheme are practically equivalent to those obtained with full-scope reoptimization. For the days of small to moderate organ deformations, only the SAM is necessary, while for the large deformation days, both SAM and SWO are required to adequately account for the deformation. Both the SAM and SWO programs can be completed within 1 min, and the overall process can be completed within 10 min. The proposed SAM-SWO scheme is practically comparable to full-scope reoptimization, but is fast enough to be implemented for on-line adaptive replanning, enabling dose-guided RT.
Available deformable registration methods are often inaccurate over large organ variation encountered, for example, in the rectum and bladder. The authors developed a novel approach to accurately and effectively register large deformations in the prostate region for adaptive radiation therapy. A software tool combining a fast symmetric demons algorithm and the use of masks was developed in C++ based on ITK libraries to register CT images acquired at planning and before treatment fractions. The deformation field determined was subsequently used to deform the delivered dose to match the anatomy of the planning CT. The large deformations involved required that the bladder and rectum volume be masked with uniform intensities of -1000 and 1000 HU, respectively, in both the planning and treatment CTs. The tool was tested for five prostate IGRT patients. The average rectum planning to treatment contour overlap improved from 67% to 93%, the lowest initial overlap is 43%. The average bladder overlap improved from 83% to 98%, with a lowest initial overlap of 60%. Registration regions were set to include a volume receiving 4% of the maximum dose. The average region was 320 x 210 x 63, taking approximately 9 min to register on a dual 2.8 GHz Linux system. The prostate and seminal vesicles were correctly placed even though they are not masked. The accumulated doses for multiple fractions with large deformation were computed and verified. The tool developed can effectively supply the previously delivered dose for adaptive planning to correct for interfractional changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.