circMTO1 suppresses HCC progression by acting as the sponge of oncogenic miR-9 to promote p21 expression, suggesting that circMTO1 is a potential target in HCC treatment. The decrease of circMTO1 in HCC tissues may serve as a prognosis predictor for poor survival of patients. (Hepatology 2017;66:1151-1164).
A coordinated balance between the positive and negative regulation of pattern-recognition receptor (PRR)-initiated innate inflammatory responses is required to ensure the most favorable outcome for the host. Post-translational modifications (PTMs) of innate sensors and downstream signaling molecules influence their activity and function by inducing their covalent linkage to new functional groups. PTMs including phosphorylation and polyubiquitination have been shown to potently regulate innate inflammatory responses through the activation, cellular translocation, and interaction of innate receptors, adaptors, and downstream signaling molecules in response to infectious and dangerous signals. Other PTMs such as methylation, acetylation, SUMOylation, and succinylation are increasingly implicated in the regulation of innate immunity and inflammation. In this review, we focus on the roles of PTMs in controlling PRR-triggered innate immunity and inflammatory responses. The emerging roles of PTMs in the pathogenesis and potential treatment of infectious and inflammatory immune diseases are also discussed.
Intratumoral injection of up to 3 x 10(12) viral particles of Ad.IL-12 to patients with advanced digestive malignancies is a feasible and well-tolerated procedure that exerts only mild antitumor effects.
The Toll-like receptor 3 (TLR3) and TLR4-signaling pathway that involves the adaptor protein TRIF activates type I interferon (IFN) and proinflammatory cytokine expression. Little is known about how TRIF pathway-dependent gene expression is regulated. SH2-containing protein tyrosine phosphatase 2 (SHP-2) is a widely expressed cytoplasmic tyrosine phosphatase. Here we demonstrate that SHP-2 negatively regulated TLR4- and TLR3-activated IFN-beta production. SHP-2 inhibited TLR3-activated but not TLR2-, TLR7-, and TLR9-activated proinflammatory cytokine IL-6 and TNF-alpha production. SHP-2 inhibited poly(I:C)-induced cytokine production by a phosphatase activity-independent mechanism. C-terminal domain of SHP-2 directly bound TANK binding kinase (TBK1) by interacting with the kinase domain of TBK1. SHP-2 deficiency increased TBK1-activated IFN-beta and TNF-alpha expression. TBK1 knockdown inhibited poly(I:C)-induced IL-6 production in SHP-2-deficient cells. SHP-2 also inhibited poly(I:C)-induced activation of MAP kinase pathways. These results demonstrate that SHP-2 specifically negatively regulate TRIF-mediated gene expression in TLR signaling, partially through inhibiting TBK1-activated signal transduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.