Unlike other snakes, most species ofRhabdophispossess glands in their dorsal skin, sometimes limited to the neck, known as nucho-dorsal and nuchal glands, respectively. Those glands contain powerful cardiotonic steroids known as bufadienolides, which can be deployed as a defense against predators. Bufadienolides otherwise occur only in toads (Bufonidae) and some fireflies (Lampyrinae), which are known or believed to synthesize the toxins. The ancestral diet ofRhabdophisconsists of anuran amphibians, and we have shown previously that the bufadienolide toxins of frog-eating species are sequestered from toads consumed as prey. However, one derived clade, theRhabdophis nuchalisGroup, has shifted its primary diet from frogs to earthworms. Here we confirm that the worm-eating snakes possess bufadienolides in their nucho-dorsal glands, although the worms themselves lack such toxins. In addition, we show that the bufadienolides ofR. nuchalisGroup species are obtained primarily from fireflies. Although few snakes feed on insects, we document through feeding experiments, chemosensory preference tests, and gut contents that lampyrine firefly larvae are regularly consumed by these snakes. Furthermore, members of theR. nuchalisGroup contain compounds that resemble the distinctive bufadienolides of fireflies, but not those of toads, in stereochemistry, glycosylation, acetylation, and molecular weight. Thus, the evolutionary shift in primary prey among members of theR. nuchalisGroup has been accompanied by a dramatic shift in the source of the species’ sequestered defensive toxins.
The giant dobsonfly species Acanthacorydalis orientalis (McLachlan, 1899) is endemic to China and is well-known because of its remarkable large adult body size and enlarged male mandibles. However, the immature stages of this species, as well as all other Acanthacorydalis species are poorly known. In this paper we describe the last-instar larvae and pupae of A. orientalis for the first time. Aspects of the bionomics of this species is also given.
Male insects with large weapons such as horns and elongate mandibles would be expected to invest more on such structures than other parts of the body for advantages in male to male competition for mating. In male genitalia, however, intermediate size provides a better fit for more females than small or large sizes, and such a male would leave more offspring regardless of their body size. These predictions were tested using a static allometry analysis between body size and other trait sizes. Acanthacorydalisasiatica is a large dobsonfly (Megalotera) and males have conspicuously large mandibles used as weapons. We examined the hypothesis that the male mandibles of this sexually dimorphic species are sexually selected to enlarge, whereas the male genitalia are stable to be intermediate regardless of a great variation in body size. The results, as predicted, showed positive allometry between male body size and mandible length but negative allometry between male body size and ectoproct length (a male grasping structure). Sperm are transferred through a small spermatophore attached externally to the female genital opening, so it may be evolutionarily unnecessary to develop an enlarged male genital size. In contrast, there may be a trade-off between male mandible size and wing length, because of negative allometry between body size and wing length in males but isometry between them in females.
The paper describes one new species, i.e. Neocyrtopsis (Neocyrtopsis) emeishanensis Shi sp. nov., transfers Phlugiolopsis platycata Shi & Zheng, 1994 to the genus Neocyrtopsis and redescribes the species.
Imidacloprid, a neonicotinoid insecticide, is widely applied to control insect pests across a broad spectrum. Though the impact of residues from this chemical pesticide on non-target organisms in the field has been reported, it was not well characterized across a wide range of ecosystems, especially for some species considered as environmental indicators that live in forests. The effects of sublethal dose of imidacloprid on firefly, Pyrocoelia analis, were analyzed physiologically and biochemically in this study to better understand the impact of chemical pesticide application on environmental indicators such as fireflies. After imidacloprid treatment, the midgut tissues of the larva presented an abnormal morphology featured as atrophy of fat body cells, shrinking cells, and the destruction of a midgut structure. The activities of antioxidant enzymes, superoxide dismutase, catalase, and peroxidase were noticeably increased during early exposure to sublethal imidacloprid and then decreased at later stages. The malondialdehyde content significantly increased after 12 h of exposure to imidacloprid compared with the control. Similarly, the enzyme activities of polyphenol oxidase and acetylcholinesterase were increased after the imidacloprid treatment and then decreased at the later stage. In summary, a sublethal dose of imidacloprid caused destructive change in the tissue structure, and this damage was followed by an excessive reactive oxygen species that could not be eliminated by antioxidant enzymes. Our results indicated that the residues of imidacloprid might cause severe toxicity to non-target insects in the environment even far away from the agro-ecosystem where the chemicals were applied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.