T-helper type 17 cells (T(H)17) are implicated in rodent models of immune-mediated diseases. Here we report their involvement in human uveitis and scleritis, and validate our findings in experimental autoimmune uveoretinitis (EAU), a model of uveitis. T(H)17 cells were present in human peripheral blood mononuclear cells (PBMC), and were expanded by interleukin (IL)-2 and inhibited by interferon (IFN)-gamma. Their numbers increased during active uveitis and scleritis and decreased following treatment. IL-17 was elevated in EAU and upregulated tumor necrosis factor (TNF)-alpha in retinal cells, suggesting a mechanism by which T(H)17 may contribute to ocular pathology. Furthermore, IL-27 was constitutively expressed in retinal ganglion and photoreceptor cells, was upregulated by IFN-gamma and inhibited proliferation of T(H)17. These findings suggest that T(H)1 cells may mitigate uveitis by antagonizing the T(H)17 phenotype through the IFN-gamma-mediated induction of IL-27 in target tissue. The finding that IL-2 promotes T(H)17 expansion provides explanations for the efficacy of IL-2R antibody therapy in uveitis, and suggests that antagonism of T(H)17 by IFN-gamma and/or IL-27 could be used for the treatment of chronic inflammation.
Interleukin 10-producing regulatory B-cells (Breg-cells) suppress autoimmune diseases while aberrant elevation of Breg-cells prevents sterilizing immunity, promotes carcinogenesis and cancer metastasis by converting resting CD4+ T-cells to regulatory T-cells (Tregs). It is therefore of interest to discover factors that induce Breg-cells. Here we show that IL-35 induces Breg-cells in-vivo and promotes their conversion to a unique Breg subset that produces IL-35 (IL-35+Breg). Treatment of mice with IL-35 conferred protection from uveitis and mice lacking IL-35 or defective in IL-35-signaling produced less Breg-cells and developed severe uveitis. Ex-vivo generated Breg-cells also suppressed uveitis by inhibiting pathogenic Th17/Th1 while promoting Tregs expansion. We further show that IL-35 induced the conversion of human B-cells into Breg-cells and suppressed uveitis by activating STAT1/STAT3 through IL-35-Receptor comprising IL-12Rβ2/IL-27Rα subunits. Discovery that IL-35 converts human B-cells into Breg-cells, allows ex-vivo production of autologous Breg-cells for immunotherapy and investigating Breg/IL-35+Breg cells roles in autoimmune diseases and cancer.
Recent studies have identified a Lys 27-to-methionine (K27M) mutation at one allele of H3F3A, one of the two genes encoding histone H3 variant H3.3, in 60% of high-grade pediatric glioma cases. The median survival of this group of patients after diagnosis is ~1 yr. Here we show that the levels of H3K27 di-and trimethylation (H3K27me2 and H3K27me3) are reduced globally in H3.3K27M patient samples due to the expression of the H3.3K27M mutant allele. Remarkably, we also observed that H3K27me3 and Ezh2 (the catalytic subunit of H3K27 methyltransfer-ase) at chromatin are dramatically increased locally at hundreds of gene loci in H3.3K27M patient cells. Moreover , the gain of H3K27me3 and Ezh2 at gene promoters alters the expression of genes that are associated with various cancer pathways. These results indicate that H3.3K27M mutation reprograms epigenetic landscape and gene expression, which may drive tumorigenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.