Heagonal GaN nanorods have been synthesized through ammoniating ZnO/Ga2O3 films deposited by radio frequency(rf) magnetron sputtering on Si(111) substrates.X-ray diffraction(XRD), Fourier transform infrared spectrophotometer (FTIR), transimission electron microscopy(TEM), high-resolution transmission electron microscopy(HRTEM) and selected-area electron diffraction (SAED) are used to analyze the structure,composition and morphology of the synthesized GaN nanorods. TEM result shows that GaN nanorods own bamboo-shaped morphalogy and have a single-crystal hexagonal wurtzite structure.The average length and dimeter of the nanorods are 3μm and 50 nm espectively.Ga2O3 and NH3 reactived directly and synthesized GaN nanorods without any catalyzer and the process of space-confined reactions.
GaN nanowires have been successfully grown on Si (111) substrates by magnetron sputtering through ammoniating Ga2O3/V thin films. The influence of ammoniating temperature on the growth of GaN nanowires was analyzed in particular. The results demonstrate that ammoniating temperature has great influence on the growth of GaN nanowires. GaN nanowires are single crystal GaN with a hexagonal wurtzite structure and high crystalline quality after ammoniation at 900 oC for 15 min, which are straight and smooth with uniform thickness along the spindle direction and high crystalline quality, 50 nm in diameter and several tens of microns in length with good emission properties, and the growth direction of the nanowire is along the preferred (002) plane. A clear red-shift of the band-gap emission has occurred. The growth mechanism is also discussed briefly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.