A tactile position sensing system based on the sensing of acoustic waves and analyzing with artificial intelligence is proposed. The system comprises a thin steel plate with multiple piezoelectric transducers attached to the underside, to excite and detect Lamb waves (or plate waves). A data acquisition and control system synchronizes the wave excitation and detection and records the transducer signals. When the steel plate is touched by a finger, the waveform signals are perturbed by wave absorption and diffraction effects, and the corresponding changes in the output signal waveforms are sent to a convolutional neural network (CNN) model to predict the x- and y-coordinates of the finger contact position on the sensing surface. The CNN model is trained by using the experimental waveform data collected using an artificial finger carried by a three-axis motorized stage. The trained model is then used in a series of tactile sensing experiments performed using a human finger. The experimental results show that the proposed touch sensing system has an accuracy of more than 95%, a spatial resolution of 1 × 1 cm2, and a response time of 60 ms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.