Endwall profiling designed to reduce secondary flow loss may change the local pressure distribution which has an impact on the sealing effectiveness of a rim seal. This paper presents a numerical comparison of the sealing effectiveness of the rim seal and the aerodynamic performance of the blade with five different endwall profiling near the blade leading edge. Three-dimensional unsteady Reynolds-averaged Navier-Stokes (URANS) equations coupled with a fully developed shear stress transport (SST) turbulent model are utilized to investigate the sealing effectiveness and the flow characteristics of turbine rim seal. The numerical method for the pressure field and sealing performance of turbine rim seal is validated on the basis of published experimental data. The total-to-static efficiency of the blade and the minimum sealing rates of the rim seal with five endwall profiling near blade leading edge are compared. The baseline, convex and concave cases are selected to investigate the transient variation of the sealing effectiveness and the flow field in the disc cavity. In comparison with baseline case, the convex endwall makes the high pressure area move forward, increases the mainstream circumferential pressure fluctuation, and reduces the sealing effectiveness. The concave endwall reduces the local pressure and the mainstream circumferential pressure fluctuation, and increases the sealing effectiveness. However, the concave endwall profiling enhances the vortex in the blade passage and increases the secondary flow loss. The flow field near the rim seal with different endwall profiling is illustrated and analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.