An electrocardiogram (ECG) records changes in the electric potential of cardiac cells using a noninvasive method. Previous studies have shown that each person's cardiac signal possesses unique characteristics. Thus, researchers have attempted to use ECG signals for personal identification. However, most studies verify results using ECG signals taken from databases which are obtained from subjects under the condition of rest. Therefore, the extraction and analysis of a subject's ECG typically occurs in the resting state. This study presents experiments that involve recording ECG information after the heart rate of the subjects was increased through exercise. This study adopts the root mean square value, nonlinear Lyapunov exponent, and correlation dimension to analyse ECG data, and uses a support vector machine (SVM) to classify and identify the best combination and the most appropriate kernel function of a SVM. Results show that the successful recognition rate exceeds 80% when using the nonlinear SVM with a polynomial kernel function. This study confirms the existence of unique ECG features in each person. Even in the condition of exercise, chaotic theory can be used to extract specific biological characteristics, confirming the feasibility of using ECG signals for biometric verification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.