Alcoholic liver disease (ALD) is a multifaceted process that involves excessive lipid, reactive oxygen species (ROS) production, unbalanced mitochondrial homeostasis, and ultimate cell death. Quercetin is a dietary phytochemical presented in various fruits and vegetables, which has anti-inflammatory and antioxidant effects. According to recent advances in pharmanutritional management, the effects of quercetin on various mitochondrial processes have attracted attention. In the study, we explored whether quercetin could attenuate ethanol-induced hepatocyte pyroptosis by maintaining mitochondrial homeostasis and studied its hepatoprotective effect and the underlying mechanism. We chose L02 cells to establish an in vitro model with ethanol-induced hepatocyte pyroptosis. Then, the cells at approximately 80% confluence were treated with quercetin (80, 40, and 20 μM). The cell viability (CCK-8) was used to investigate the effect of quercetin on ethanol-induced L02 cell proliferation. Relative assay kits were used to measure oxidative stress index ( OSI = TOS / TAS ), lipid peroxidation (LPO) release, and mitochondrial membrane potential ( δ Ψ m ). The morphology of mitochondria was characterized by transmission electron microscopy- (TEM-) based analysis. Mitochondrial dynamics (Mito Tracker Green), mitROS (MitoSOX Red Mitochondrial Superoxide) production, and nuclear DNA (nDNA) damage (γH2AX) markers were detected by immunofluorescence. The mRNA levels of mitochondrial function (including mitochondrial DNA (mtDNA) transcription genes TWNK, MTCO1, and MFND) and pyroptosis-related genes were detected by RT-qPCR, and the protein levels of NLRP3, ASC, caspase1, cleaved-caspase1, IL-18, IL-1β, and GSDMD-N were detected by western blot. The results showed that quercetin treatment downregulated redox status, lipid droplets, and LPO release, restored damaged mitochondrial membrane potential, and repaired mtDNA damage, PGC-1α nuclear transfer, and mitochondrial dynamics. The gene and protein expressions of NLRP3, ASC, cleaved-caspase1, IL-18, IL-1β, and GSDMD-N were decreased, which effectively inhibited cell pyroptosis. Therefore, the results indicated that quercetin protected ethanol-induced hepatocyte pyroptosis via scavenging mitROS and promoting PGC-1α-mediated mitochondrial homeostasis in L02 cells.
Chuanxiong Rhizoma, the dried rhizome of Ligusticum chuanxiong Hort., is a commonly used drug for promoting blood circulation and dissipating congestion. Tetramethylpyrazine (TMP), the main active ingredient of Ligusticum chuanxiong, has significant antioxidant, anti-inflammatory, and vascular protective effects. However, the protective properties and underlying mechanisms of TMP against endothelial injury-induced insufficient angiogenesis and thrombosis have not been elucidated. Therefore, we aimed to explore the protective effects of TMP on endothelial injury and its antithrombotic effects and study the mechanism. In vitro experiments showed that TMP could alleviate hydrogen peroxide– (H2O2–) induced endothelial injury of human umbilical vein endothelial cells (HUVECs) and the protective mechanism might be related to the regulation of MAPK signaling pathway, and its antioxidative and antiapoptotic effects. In vivo experiments showed that TMP restored PTK787-induced damage to intersegmental vessels (ISVs) in Tg(fli-1: EGFP)y1 transgenic (Flik) zebrafish larvae. Similarly, adrenalin hydrochloride– (AH–) induced reactive oxygen species (ROS) production and thrombosis in AB strain zebrafish were inhibited by TMP. RT-qPCR assay proved that TMP could inhibit the expression of fga, fgb, fgg, f7, and von Willebrand factor (vWF) mRNA to exert an antithrombotic effect. Our findings suggest that TMP can contribute to endothelial injury protection and antithrombosis by modulating MAPK signaling and attenuating oxidative stress and antiapoptosis.
Background: 2,3,5,4'-tetrahydroxystilbence-2-O-β-D-glucoside(TSG) is a polyhydroxyphenolic compound, which exhibited a broad spectrum of pharmacological activities, such asanti-inflammatory, anti-depression, anti-oxidation and anti-atherosclerosis.However, the compound had poor bioavailability and the underlying absorption mechanisms had not been studied. Therefore, the purpose of this study was to investigate the intestinal absorption mechanism of TSG. Methods:This study used Caco-2 cell monolayer model and single-passintestinal perfusion modelto explore the gastrointestinal absorption mechanisms of TSG. The effects of basic parameters such as drug concentration, time and pH on the intestinal absorption of TSG were analyzed by high performance liquid chromatography.The absorption susceptibility of TSG to three inhibitors, P-gp inhibitors verapamil hydrochloride and quinidine, and MRP2 inhibitor probenecid were also assessed. Results: TSG was poorly absorbed in the intestines and the absorption of TSG in stomach is much higher than that in intestine. Both in vitro andin situ experiments showed that the absorption of TSG was saturated with increasing concentration and it was better absorbed in a weakly acidic environment pH 6.4. Moreover, TSG interacts with P-gp and MRP2, and TSG was not only the substrate of the P-gp and MRP2, but also affected the expression of P-gp and MRP2. Conclusions: It wasconcluded that the gastrointestinalabsorption mechanisms ofTSG involved processes passive transport and the participation ofefflux transporters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.