Enhancer of zeste homolog 2 (EZH2) is a critical component of the polycomb-repressive complex 2 (PRC2) that regulates many essential biological processes, including embryogenesis and many developmental events. The oncogenic role of EZH2 has recently been implicated in several cancer types. In this study, we first confirmed that the over-expression of EZH2 is a frequent event in oral tongue squamous cell carcinoma (OTSCC). We further demonstrated that EZH2 over-expression is correlated with advanced stages of the disease and is associated with lymph node metastasis. Statistical analysis revealed that EZH2 over-expression was correlated with reduced overall survival. Furthermore, over-expression of EZH2 was correlated with reduced expression of tumor suppressor gene E-cadherin. These observations were confirmed in vitro, in which knockdown of EZH2 induced E-cadherin expression and reduced cell migration and invasion. In contrast, ectopic transfection of EZH2 led to reduced E-cadherin expression and enhanced cell migration and invasion. Furthermore, EZH2 may act on cell migration in part by suppressing the E-cadherin expression. Taken together, these data suggest that EZH2 plays major roles in the progression of OTSCC, and may serve as a biomarker or therapeutic target for patients at risk of metastasis.
Mangrove roots harbor a repertoire of microbial taxa that contribute to important ecological functions in mangrove ecosystems. However, the diversity, function, and assembly of mangrove root-associated microbial communities along a continuous fine-scale niche remain elusive. Here, we applied amplicon and metagenome sequencing to investigate the bacterial and fungal communities among four compartments (nonrhizosphere, rhizosphere, episphere, and endosphere) of mangrove roots. We found different distribution patterns for both bacterial and fungal communities in all four root compartments, which could be largely due to niche differentiation along the root compartments and exudation effects of mangrove roots. The functional pattern for bacterial and fungal communities was also divergent within the compartments. The endosphere harbored more genes involved in carbohydrate metabolism, lipid transport, and methane production, and fewer genes were found to be involved in sulfur reduction compared to other compartments. The dynamics of root-associated microbial communities revealed that 56–74% of endosphere bacterial taxa were derived from nonrhizosphere, whereas no fungal OTUs of nonrhizosphere were detected in the endosphere. This indicates that roots may play a more strictly selective role in the assembly of the fungal community compared to the endosphere bacterial community, which is consistent with the projections established in an amplification-selection model. This study reveals the divergence in the diversity and function of root-associated microbial communities along a continuous fine-scale niche, thereby highlighting a strictly selective role of soil-root interfaces in shaping the fungal community structure in the mangrove root systems.
Background Phosphorus (P) is one of the most essential macronutrients on the planet, and microorganisms (including bacteria and archaea) play a key role in P cycling in all living things and ecosystems. However, our comprehensive understanding of key P cycling genes (PCGs) and microorganisms (PCMs) as well as their ecological functions remains elusive even with the rapid advancement of metagenome sequencing technologies. One of major challenges is a lack of a comprehensive and accurately annotated P cycling functional gene database. Results In this study, we constructed a well-curated P cycling database (PCycDB) covering 139 gene families and 10 P metabolic processes, including several previously ignored PCGs such as pafA encoding phosphate-insensitive phosphatase, ptxABCD (phosphite-related genes), and novel aepXVWPS genes for 2-aminoethylphosphonate transporters. We achieved an annotation accuracy, positive predictive value (PPV), sensitivity, specificity, and negative predictive value (NPV) of 99.8%, 96.1%, 99.9%, 99.8%, and 99.9%, respectively, for simulated gene datasets. Compared to other orthology databases, PCycDB is more accurate, more comprehensive, and faster to profile the PCGs. We used PCycDB to analyze P cycling microbial communities from representative natural and engineered environments and showed that PCycDB could apply to different environments. Conclusions We demonstrate that PCycDB is a powerful tool for advancing our understanding of microbially driven P cycling in the environment with high coverage, high accuracy, and rapid analysis of metagenome sequencing data. The PCycDB is available at https://github.com/ZengJiaxiong/Phosphorus-cycling-database.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.