We proposed and experimentally demonstrated a few mode fiber (FMF) based Raman distributed temperature sensor (RDTS) to extend the sensing distance with enhanced signal-to-noise ratio (SNR) of backscattered anti-Stokes spontaneous Raman scattering. Operating in the quasi-single mode (QSM) with efficient fundamental mode excitement, the FMF allows much larger input pump power before the onset of stimulated Raman scattering compared with the standard single mode fiber (SSMF) and mitigates the detrimental differential mode group delay (DMGD) existing in the conventional multimode fiber (MMF) based RDTS system. Comprehensive theoretical analysis has been conducted to reveal the benefits of RDTS brought by QSM operated FMFs with the consideration of geometric/optical parameters of different FMFs. The measurement uncertainty of FMF based scheme has also been evaluated. Among fibers being investigated and compared (SSMF, 2-mode and 4-mode FMFs, respectively), although an ideal 4-mode FMF based RDTS has the largest SNR enhancement in principle, real fabrication imperfections and larger splicing loss degrade its performance. While the 2-mode FMF based system outperforms in longer distance measurement, which agrees well with the theoretical calculations considering real experimental parameters. Using the conventional RDTS hardware, a 30-ns single pulse at 1550nm has been injected as the pump; the obtained temperature resolutions at 20km distance are estimated to be about 10°C, 7°C and 6°C for the SSMF, 4-mode and 2-mode FMFs, respectively. About 4°C improvement over SSMF on temperature resolution at the fiber end with 3m spatial resolution within 80s measuring time over 20km 2-mode FMFs have been achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.