Terahertz (THz) radiation has a wide range of applications including use in medicine. However, effects of high‐power THz radiation have not been clearly elucidated. We used a 2.52 THz self‐made optically pumped gas THz laser, the low‐ and high‐energy group, to irradiate the backs of Hartley guinea pigs. RNA‐sequencing was done to explore global transcriptional responses in the irradiated skin. Gene Ontology analysis revealed that differentially expressed genes (DEGs) between the unexposed and low‐energy exposed groups were associated with skin development, skin barrier establishment, and multicellular organismal water homeostasis or water loss regulation via the skin. On the other hand, comparison between the unexposed and high‐energy exposed groups showed that the DEGs mediated monocarboxylic acid metabolism, blood vessel morphogenesis, establishment of skin barrier, blood vessel development, or angiogenesis. Our analyses demonstrate the potential effects of high‐power THz source on the skin and sets the basis for further studies on the safety and application of the high‐power THz in dermatology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.