Parthenolide (PN) is the main sesquiterpene lactone found in feverfew with potent anti-inflammatory function. The anticancer property of PN has been demonstrated in both in vitro cell culture and in vivo animal model, while the molecular mechanisms remain to be further elucidated. In the present study, we evaluated the involvement of nuclear transcription factor-kappaB (NF-kappaB) and c-Jun N-terminal kinase (JNK) in the anticancer activity of PN by examining the sensitization effect of PN on tumor necrosis factor (TNF)-alpha-induced apoptosis in human cancer cells. Pre-treatment with PN greatly sensitized various human cancer cells to TNF-alpha-induced apoptosis. Such sensitization is closely associated with the inhibitory effect of PN on TNF-alpha-mediated NF-kappaB activation. Our study revealed a new mechanism that PN inhibits TNF-alpha-mediated NF-kappaB activation via disrupting the recruitment of the IkappaB kinases (IKK) complex to TNF receptor, which then blocked the subsequent signaling events including IKK kinase activation, IkappaBalpha degradation, p65 nuclear translocation, DNA binding and transactivation. Moreover, PN also markedly enhanced and sustained TNF-alpha-mediated JNK activation. A specific JNK inhibitor (SP600125), as well as over-expression of dominant-negative forms of JNK1 and JNK2 abolished the sensitization effect of PN on TNF-alpha-induced apoptosis. It is thus believed that suppressed NF-kappaB activation and sustained JNK activation contribute to the sensitization effect of PN to TNF-alpha-mediated cell death in human cancer cells.
The purpose of this study was to explore how the mitochondrial AOX (alternative oxidase) pathway alleviates photoinhibition in Rumex K-1 leaves. Inhibition of the AOX pathway decreased the initial activity of NADP-malate dehydrogenase (EC 1.1.1.82, NADP-MDH) and the pool size of photosynthetic end electron acceptors, resulting in an over-reduction of the photosystem I (PSI) acceptor side. The over-reduction of the PSI acceptor side further inhibited electron transport from the photosystem II (PSII) reaction centers to the PSII acceptor side as indicated by an increase in V(J) (the relative variable fluorescence at J-step), causing an imbalance between photosynthetic light absorption and energy utilization per active reaction center (RC) under high light, which led to the over-excitation of the PSII reaction centers. The over-reduction of the PSI acceptor side and the over-excitation of the PSII reaction centers enhanced the accumulation of reactive oxygen species (ROS), which inhibited the repair of the photodamaged PSII. However, the inhibition of the AOX pathway did not change the level of photoinhibition under high light in the presence of the chloroplast D1 protein synthesis inhibitor chloramphenicol, indicating that the inhibition of the AOX pathway did not accelerate the photodamage to PSII directly. All these results suggest that the AOX pathway plays an important role in the protection of plants against photoinhibition by minimizing the inhibition of the repair of the photodamaged PSII through preventing the over-production of ROS.
Long noncoding RNAs (lncRNAs) play important roles in the development of vascular diseases. However, the effect of lncRNA NORAD on atherosclerosis remains unknown. This study aimed to investigate the effect NORAD on endothelial cell injury and atherosclerosis. Ox-LDL-treated human umbilical vein endothelial cells (HUVECs) and high-fat-diet (HFD)-fed ApoE −/− mice were used as in vitro and in vivo models. Results showed that NORAD-knockdown induced cell cycle arrest in G0/G1 phase, aggravated ox-LDL-induced cell viability reduction, cell apoptosis, and cell senescence along with the increased expression of Bax, P53, P21 and cleaved caspase-3 and the decreased expression of Bcl-2. The effect of NORAD on cell viability was further verified via NORAD-overexpression. NORAD-knockdown increased ox-LDL-induced reactive oxygen species, malondialdehyde, p-IKBα expression levels and NF-κB nuclear translocation. Proinflammatory molecules ICAM, VCAM, and IL-8 were also increased by NORAD-knockdown. Additionally, we identified the strong interaction of NORAD and IL-8 transcription repressor SFPQ in HUVECs. In ApoE −/− mice, NORAD-knockdown increased the lipid disorder and atherosclerotic lesions. The results have suggested that lncRNA NORAD attenuates endothelial cell senescence, endothelial cell apoptosis, and atherosclerosis via NF-κB and p53-p21 signaling pathways and IL-8, in which NORAD-mediated effect on IL-8 might through the direct interaction with SFPQ.
Here we report that mice deficient for the proteasome activator, REGg, exhibit a marked resistance to TPA (12-O-tetradecanoyl-phorbol-13-acetate)-induced keratinocyte proliferation, epidermal hyperplasia and onset of papillomas compared with wild-type counterparts. Interestingly, a massive increase of REGg in skin tissues or cells resulting from TPA induces activation of p38 mitogen-activated protein kinase (MAPK/p38). Blocking p38 MAPK activation prevents REGg elevation in HaCaT cells with TPA treatment. AP-1, the downstream effector of MAPK/p38, directly binds to the REGg promoter and activates its transcription in response to TPA stimulation. Furthermore, we find that REGg activates Wnt/b-catenin signalling by degrading GSK-3b in vitro and in cells, increasing levels of CyclinD1 and c-Myc, the downstream targets of b-catenin. Conversely, MAPK/p38 inactivation or REGg deletion prevents the increase of cyclinD1 and c-Myc by TPA. This study demonstrates that REGg acts in skin tumorigenesis mediating MAPK/p38 activation of the Wnt/b-catenin pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.