Topographic and wetting properties of Inconel 718 (IN718) surfaces were modified via nanosecond laser treatment. In order to investigate surface wetting behavior without additional post treatment, three kinds of microstructures were created on IN718 surfaces, including line pattern, grid pattern and spot pattern. From the viewpoint of surface morphology, the results show that laser ablated grooves and debris significantly altered the surface topography as well as surface roughness compared with the nontreated surfaces. The effect of laser parameters (such as laser scanning speed and laser average power) on surface features was also discussed. We have observed the treated surface of IN718 showed very high hydrophilicity just after laser treatment under ambient air condistion.And this hydrophicility property has changed rapidly to the other extreme; very high hydrophobicity over just about 20 days. Further experiments and analyses have been carried out in order to investigate this phenomena. Based on the XPS analysis, the results indicate that the change of wetting property from hydrophilic to hydrophobic over time is due to the surface chemistry modifications, especially carbon content. After the contact angles reached steady state, the maximum water contact angle (WCA) for line-patterned and grid-patterned surfaces increased to 152.3 1.2° and 156.8 1.1° with the corresponding rolling angle (RA) of 8.8 1.1° and 6.5 0.8°, respectively. These treated IN718 surfaces exhibited superhydrophobic property. However, the maximum WCA for the spot-patterned surfaces just increased to 140.8 2.8° with RA above 10°. Therefore, it is deduced that laser-inscribed modification of surface wettability has high sensitivity to surface morphology and surface chemical compositions. This work can be utilized to optimize the laser processing parameters so as to fabricate desired IN718 surfaces with hydrophobic or even superhydrophobic property and thus extend the applications of IN718 material in various fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.