In this paper, moving reaction boundary titration (MRBT) was developed for rapid and accurate quantification of total protein in infant milk powder, from the concept of moving reaction boundary (MRB) electrophoresis. In the method, the MRB was formed by the hydroxide ions and the acidic residues of milk proteins immobilized via cross-linked polyacrylamide gel (PAG), an acid-base indicator was used to denote the boundary motion. As a proof of concept, we chose five brands of infant milk powders to study the feasibility of MRBT method. The calibration curve of MRB velocity versus logarithmic total protein content of infant milk powder sample was established based on the visual signal of MRB motion as a function of logarithmic milk protein content. Weak influence of nonprotein nitrogen (NPN) reagents (e.g., melamine and urea) on MRBT method was observed, due to the fact that MRB was formed with hydroxide ions and the acidic residues of captured milk proteins, rather than the alkaline residues or the NPN reagents added. The total protein contents in infant milk powder samples detected via the MRBT method were in good agreement with those achieved by the classic Kjeldahl method. In addition, the developed method had much faster measuring speed compared with the Kjeldahl method.
A visual, rapid and accurate moving reaction boundary titration (MRBT) method was used for the determination of the total protein in soya-bean milk. During the process, moving reaction boundary (MRB) was formed by hydroxyl ions in the catholyte and soya-bean milk proteins immobilized in polyacrylamide gel (PAG), and an acid-base indicator was used to denote the boundary motion. The velocity of MRB has a relationship with protein concentration, which was used to obtain a standard curve. By paired t-test, there was no significant difference of the protein content between MRBT and Kjeldahl method at 95% confidence interval. The procedure of MRBT method required about 10 min, and it had linearity in the range of 2.0-14.0 g/L, low limit of detection (0.05 g/L), good precision (RSD of intra-day < 1.90% and inter-day < 4.39%), and high recoveries (97.41%-99.91%). In addition, non-protein nitrogen (NPN) such as melamine added into the soya-bean milk had weak influence on MRBT results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.