BackgroundLinker for activation of T cells (LAT), a transmembrane adaptor protein, plays a role in T cell and mast cell function, while it remains unclear how histone modifications mediate LAT expression in allergic asthma. The present study aimed at understanding alterations of lymphocyte LAT in patients with asthma and potential mechanisms by which histone modulation may be involved in.MethodThe expression of LAT mRNA was checked by Quantitative real-time PCR and histone hypoacetylation on LAT promoter was detected by Chromatin Immunoprecipitation.ResultsOur results demonstrated that the expression of LAT mRNA in peripheral blood T cells from patients with asthma decreased, as compared to healthy controls. Peripheral blood T cells were treated with pCMV-myc-LAT, pCMV-myc or LAT-siRNA plasmid. Over-expression of LAT mRNA and decrease of Th2 cytokine production were noted, which could be prevented by the inhibition of LAT. The further investigation of the role of histone was performed in an asthma model induced by allergen. Histone hypoacetylation on LAT promoter could inhibit LAT expression and enhanced Th2 differentiation, while trichostatin A, a histone deacetylase inhibitor, promoted LAT expression and inhibited Th2 cytokine production.ConclusionOur results indicate that histone hypoacetylation may regulate LAT expression on T cells and modify Th2 polarization in allergic asthma.
The aim of this study was to identify the optimal cut-off value of T cell enzyme-linked immunospot assay for tuberculosis (T-SPOT.TB) and evaluate its diagnostic performance alone (in the peripheral blood) or in combination with the adenosine deaminase (ADA) activity test (in peripheral blood and the pleural fluid) in patients with tuberculous pleurisy.Adult patients presenting with pleural effusion were included in this prospective cohort study. Tuberculous pleurisy was diagnosed by T-SPOT.TB in peripheral blood and a combination of T-SPOT.TB and ADA activity test in pleural fluid and peripheral blood. Receiver operating characteristic (ROC) curve in combination with multivariate logistic regression was used to evaluate the diagnostic performance of the assays.Among a total of 189 patients with suspected tuberculous pleurisy who were prospectively enrolled in this study, 177 patients were validated for inclusion in the final analysis. ROC analysis revealed that the area under the ROC curve (AUC) for T-SPOT.TB in pleural fluid and peripheral blood was 0.918 and 0.881, respectively, and for the ADA activity test in pleural fluid was 0.944. In addition, 95.5 spot-forming cells (SFCs)/2.5 × 105 cells were determined as the optimal cut-off value for T-SPOT.TB in pleural fluid. Parallel combination of T-SPOT.TB and ADA activity test in pleural fluid showed increased sensitivity (96.9%) and specificity (87.5%), whereas serial combination showed increased specificity (97.5%). The combination of 3 assays had the highest sensitivity at 97.9%, with an AUC value of 0.964.T-SPOT.TB in pleural fluid performed better than that in peripheral blood and the ADA activity test in pleural fluid for tuberculous pleurisy diagnosis. The optimal cut-off value of T-SPOT.TB in pleural fluid was 95.5 SFCs/2.5 × 105 cells. Combination of 3 assays might be a promising approach for tuberculous pleurisy diagnosis.
The objective was to investigate the molecular mechanism of mitochondrial reactive oxygen species (ROS) signaling regulation of pulmonary artery endothelial cell (HPAEC) secretion in the condition of oxidative stress. Acrolein (40 μM) induced HPAEC mitochondrial generation of ROS, rotenone (2 μmol/L) blocked mitochondrial respiratory chain complex I, cesium chloride (CsCl, 40 mmol/L)blocked K(+)channels, and saline (0.9 g/dl) were used as control. The generations of NOS, ET-1 and VEGF were determined with ELISA in the condition of different treatment reagents namely acrolein, acrolein plus rotenone, acrolein plus CsCl and saline. In the different reagent treatment of HPAECs, acrolein increased mitochondrial ROS, membrane potential, Kv1.5 mRNA and protein expression, intracellular calcium and the generation of NOS (determining NO production), ET-1 and VEGF, and those were reduced by rotenone. CsCl decreased the increment of membrane potential, the elevation of intracellular calcium and the upregulation of NOS, E-1 and VEGF expressions, which were induced by acrolein. The present study demonstrated that mitochondrial ROS-K(+)channel regulated HPAEC secretion of NO, ET-1 and VEGF in the condition of oxidative stress. Kv1.5 channel may be an important component of ROS-K+ channel signaling pathway, and intracellular calcium contributed to mitochondrial ROS-K(+) channel signaling modulation of HPAEC secretion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.