a b s t r a c tCoal conversion including reforming of nascent tar over the char surface in a drop tube reactor (DTR) was studied both experimentally and numerically. Victorian brown coal and char prepared from the same coal were co-fed into an atmospheric DTR. The effects of reaction temperature (973-1173 K), solid hold-up (8.31 × 10 −6 -2.50 × 10 −4 ), residence time (0-4.6 s for gas; 0-0.78 s for solid particles), and steam partial pressure (0-0.05 MPa) on the conversion characteristics were investigated. A 4-lump kinetic model consisting of tar, gases, char, and soot with 6 global reactions was developed based on the experimental results. The lumped kinetic model was integrated with a computational fluid dynamics (CFD) simulation using an Eulerian-Eulerian approach for mixed phase flow to simulate the coal conversion experiments in the DTR. The CFD results for product distribution during coal conversion in the DTR showed reasonable agreement with the experimental results. The CFD approach presented is suitable for use in designing and optimizing a pyrolyzer for a triple-bed combined circulating fluidized-bed coal gasifier, consisting of a downer (pyrolyzer), a bubbling fluidized bed (gasifier), and a riser (combustor).
A novel triple-bed combined circulating fluidized-bed (TB-CFB) coal gasifier, consisting of a downer (pyrolyzer), a bubbling fluidized bed (gasifier), and a riser (combustor) was proposed for realizing low-temperature coal gasification. Several key thermochemical reactions were extracted from those expected in the downer unit: the reforming of refractory tar in both the gas phase and over the char surface, and the steam gasification of the nascent char. This review highlights our recent progress, both experimental and numerical, in studies of thermochemical coal conversion including the various reaction processes, by employing a drop-tube reactor that well approximates the reaction environment in a downer reactor. This discussion can be utilized in designing TBCFBs and optimizing their operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.