Magnesium as an enzymatic activator is essential for various physiological functions such as cell cycle, metabolic regulation, muscle contraction, and vasomotor tone. A growing body of evidence supports that magnesium supplementation (mainly magnesium sulfate and magnesium oxide) prevents or treats various types of disorders or diseases related to respiratory system, reproductive system, nervous system, digestive system, and cardiovascular system as well as kidney injury, diabetes and cancer. The ongoing pandemic coronavirus disease 19 (COVID-19) characterized by respiratory tract symptoms with different degrees of important organ and tissue damages has attracted global attention. Particularly, effective drugs are still lacking in the COVID-19 therapy. In this review, we find and summarize the effectiveness of magnesium supplementation on the disorders or diseases, and provide a reference to the possibility of magnesium supplementation for supportive treatment in patients with COVID-19.
Naturally occurring naphthoquinones, usually in forms of botanical extracts, have been implicated with human life since ancient time, far earlier than their isolation and identification in modern era. The long use history of naphthoquinones has witnessed their functional shift from the original purposes as dyes and ornaments toward medicinal benefits. Hitherto, numerous studies have been carried out to elucidate the pharmacological profile of both natural and artificial naphthoquinones. A number of entities have been identified with promising therapeutic potential. Apart from the traditional effects of wound healing, anti-inflammatory, hemostatic, antifertility, insecticidal and antimicrobial, etc., the anticancer potential of naphthoquinones either in combination with other treatment approaches or on their own is being more and more realized. The molecular mechanisms of naphthoquinones in cells mainly fall into two categories as inducing oxidant stress by ROS (reactive oxygen species) generation and directly interacting with traditional therapeutic targets in a non-oxidant mechanism. Based on this knowledge, optimized agents with naphthoquinones scaffold have been acquired and further tested. Hereby, we summarize the explored biological mechanisms of naphthoquinones in cells and review the application perspective of promising naphthoquinones in cancer therapies.
With tunable pore
size and rich active metal centers, metal–organic
frameworks (MOFs) have been regarded as the one of the promising materials
for catalysis. Prospectively, employing MOFs in electrochemistry would
notably broaden the scope of electrocatalysis. However, this application
is largely hindered by MOFs’ conventionally poor electrical
conductivity. Integrating MOFs without compromising their crystalline
superiority holds a grand challenge to unveil their pristine electrocatalytic
properties. In this work, we introduce an epitaxial growth strategy
to accomplish the efficient integration of the insulating MOFs into
electrochemistry. Particularly, with pristine-graphene-templated growth,
the two-dimensional (2D) single-crystal MOF possesses a large lateral
size of ∼23 μm and high aspect ratio up to ∼1500
and exhibits a significant electrochemical enhancement, with a charge
transfer resistance of ∼200 ohm and a 30 mA cm–2 current density at only 0.53 V versus a reversible hydrogen electrode.
The epitaxial strategy could be further applied to other 2D substrates,
such as MoS2. This MOF/graphene 2D architecture sheds light
on integrating insulating MOFs into electrochemical applications.
Electrochemical nitrogen reduction reaction (NRR) as a new strategy for synthesizing ammonia has attracted ever‐growing attention, due to its renewability, flexibility, and sustainability. However, the lack of efficient electrocatalysts has hampered the development of such reactions. Herein, a series of amorphous Sn/crystalline SnS2 (Sn/SnS2) nanosheets by an L‐cysteine‐based hydrothermal process, followed by in situ electrochemical reduction, are synthesized. The amount of reduced amorphous Sn can be adjusted by selecting electrolytes with different pH values. The optimized Sn/SnS2 catalyst can achieve a high ammonia yield of 23.8 µg h−1 mg−1, outperforming most reported noble‐metal NRR electrocatalysts. According to the electrochemical tests, the conversion of SnS2 to an amorphous Sn phase leads to the substantial increase of its catalytic activity, while the amorphous Sn is identified as the active phase. These results provide a guideline for a rational design of low‐cost and highly active Sn‐based catalysts thus paving a wider path for NRR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.