SUMMARY
Huntington’s disease like-2 (HDL2) is a phenocopy of Huntington’s disease caused by CTG/CAG repeat expansion at the Junctophilin-3 (JPH3) locus. The mechanisms underlying HDL2 pathogenesis remain unclear. Here we developed a BAC transgenic mouse model of HDL2 (BAC-HDL2) that exhibits progressive motor deficits, selective neurodegenerative pathology and ubiquitin-positive nuclear inclusions (NIs). Molecular analyses reveal a novel promoter at the transgene locus driving the expression of a CAG repeat transcript (HDL2-CAG) from the strand antisense to JPH3, which encodes an expanded polyglutamine (polyQ) protein. Importantly, BAC-HDL2 but not control BAC mice accumulate polyQ-containing NIs in a pattern strikingly similar to those in the patients. Furthermore, BAC mice with genetic silencing of the expanded CUG transcript still express HDL2-CAG transcript and manifest polyQ pathogenesis. Finally, studies of HDL2 mice and patients revealed CBP sequestration into NIs and evidence for interference of CBP-mediated transcriptional activation. These results suggest overlapping polyQ-mediated pathogenic mechanisms in HD and HDL2
One of the major obstacles for polyhydroxybutyrate (PHB), a biodegradable and biocompatible polymer, in commercial applications is its poor elongation at break (~3%). In this study, the effects of nanocellulose contents and their types, including cellulose nanocrystals (CNCs) and cellulose nanofibers (CNFs) on the crystallization, thermal, and mechanical properties of PHB composites were systematically compared. We explored the toughening mechanisms of PHB by adding CNCs and cellulose CNFs. The results showed that when the morphology of bagasse nanocellulose was rod-like and its content was 1 wt %, the toughening modification of PHB was the best. Compared with pure PHB, the elongation at break and Young’s modulus increased by 91.2% and 18.4%, respectively. Cellulose nanocrystals worked as heterogeneous nucleating agents in PHB and hence reduced its crystallinity and consequently improved the toughness of PHB. This simple approach could potentially be explored as a strategy to extend the possible applications of this biopolymer in packaging fields.
During this study, fresh mangoes were packed into multilayer coatings made from chitosan containing cinnamon essential oil microcapsules and alginate solutions that were alternately deposited on the mango surfaces by electrostatic interaction. We then compared the physical and chemical indexes to examine the changes in the mangoes during 14 d of storage. The results showed that the microcapsules prepared in the experiment were of uniform size, with the sustained release of essential oil exceeding 168 h. Compared with uncoated mangoes, the mangoes coated with the coatings could effectively inhibit the decrease of the titratable acid, soluble solids, and vitamin C contents; slow down the increase of the weight loss and pH; delay the appearance of mango respiration peaks; and preserve the firmness at storage conditions of 25 °C and 50% RH. Our findings revealed that mangoes without treatment showed losses in their edible and commercial value after 14 days in storage, and the mangoes coated with five layers still retained food and commercial value. Cross-sectional scanning electron microscopy images of the coatings showed that they had distinct layers and were of good uniformity and tight binding, and they also had good adhesion to the mango surface. These findings provide important insights into the use of coatings for the packaging of fruits during storage, which is essential for promoting the application of coatings for packaging preservation without big cost and expensive equipment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.