The purpose of this study was to investigate whether modeling within separate body mass index (BMI) stratifications improves the accuracy of maximal oxygen uptake (VO 2max ) prediction compared to a model developed regardless of adults' BMIs. A total of 250 Taiwanese adults (total group, TOG) aged 22-64 years participated in this study, and were stratified into a normal group (NOG: 135), an overweight group (OVG: 69), and an obesity group (OBG: 46), according to the BMI classification recommended by the Taiwan Ministry of Health and Welfare. VO 2max was directly measured on an electromagnetic bicycle ergometer. Using the participant's heart rate in the 3-min incremental step-in-place test and demographic parameters, VO 2max prediction models established for four groups were TOG model, NOG model, OVG model, and OBG model, respectively. Compared with the TOG model, the OVG and OBG models had higher coefficients of determination and lower standard error of estimates (SEEs), or %SEEs. The validities of the NOG (r = 0.780), OVG (r = 0.776), and OBG (r = 0.791) models for BMI subgroups increased by 1.79%, 4.64%, and 8.22% respectively, and the reliabilities (NOG model: ICC = 0.755; OVG model: ICC = 0.765; OBG model: ICC = 0.779) increased by 3.18%, 3.27%, and 9.63%, respectively. These results suggested using separate models established in BMI stratifications can effectively improve the prediction of VO 2max .
The maximal oxygen uptake (VO2max) prediction models established by step tests are often used for evaluating cardiorespiratory fitness (CRF). However, it is unclear which type of stepping frequency sequence is more suitable for the public to assess the CRF. Therefore, the main purpose of this study was to test the effectiveness of two 3-min incremental step-in-place (3MISP) tests (i.e., 3MISP30s and 3MISP60s) with the same total number of steps but different step-frequency sequences in predicting VO2max. In this cross-sectional study, a total of 200 healthy adults in Taiwan completed 3MISP30s and 3MISP60s tests, as well as cardiopulmonary exercise testing. The 3MISP30s and 3MISP60s models were established through multiple stepwise regression analysis by gender, age, percent body fat, and 3MISP-heart rate. The statistical analysis included Pearson’s correlations, the standard errors of estimate, the predicted residual error sum of squares, and the Bland–Altman plot to compare the measured VO2max values and those estimated. The results of the study showed that the exercise intensity of the 3MISP30s test was higher than that of the 3MISP60s test (% heart rate reserve (HRR) during 3MISP30s vs. %HRR during 3MISP60s = 81.00% vs. 76.81%, p < 0.001). Both the 3MISP30s model and the 3MISP60s model explained 64.4% of VO2max, and the standard errors of the estimates were 4.2043 and 4.2090 mL·kg−1·min−1, respectively. The cross-validation results also indicated that the measured VO2max values and those predicted by the 3MISP30s and 3MISP60s models were highly correlated (3MISP30s model: r = 0.804, 3MISP60s model: r = 0.807, both p < 0.001). There was no significant difference between the measured VO2max values and those predicted by the 3MISP30s and 3MISP60s models in the testing group (p > 0.05). The results of the study showed that when the 3MISP60s test was used, the exercise intensity was significantly reduced, but the predictive effectiveness of VO2max did not change. We concluded that the 3MISP60s test was physiologically less stressful than the 3MISP30s test, and it could be a better choice for CRF evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.