This study analyzed the wind speed data of the met mast in the first commercial-scale offshore wind farm of Taiwan from May 2017 to April 2018. The mean wind speed and standard deviation, wind rose, histogram, wind speed profile, and diurnal variation of wind speed with associated changes in wind direction revealed some noteworthy findings. First, the standard deviation of the corresponding mean wind speed is somewhat high. Second, the Hellmann exponent is as low as 0.05. Third, afternoons in winter and nights and early mornings in summer have the highest and lowest wind speed in a year, respectively. Regarding the histogram, the distribution probability of wind is bimodal, which can be depicted as a mixture of two gamma distributions. In addition, the corresponding change between the hourly mean wind speed and wind direction revealed that the land–sea breeze plays a significant role in wind speed distribution, wind profile, and wind energy production. The low Hellmann exponent is discussed in detail. To further clarify the effect of the land–sea breeze for facilitating future wind energy development in Taiwan, we propose some recommendations.
Renewable energy is crucial for achieving net zero emissions. Taiwan has abundant wind resources and most major wind farms are offshore over the Taiwan Strait due to a lack of space on land. A thorough study that includes time series modeling of wind speed and sea breeze identification and evaluation for Taiwan’s offshore wind farms was conducted. The time series modeling identified two periodic (annual and diurnal) components and an autoregressive model for multiple-year wind speed time series. A new method for sea breeze type identification and magnitude evaluation is proposed. The method (named as EACH) utilizes a vector and an ellipse to represent the wind condition of a day. Verification of the type identification determined by the new method in two cases of different seasons has been conducted by using surface weather charts and wind data measured by lidar. It is a concise, effective, and programmable way to filter a number of dates for type identification and speed change precursor of sea breeze. We found that the typical daily wind power production of corkscrew sea breeze in Central Taiwan is more than 33 times that of pure sea breeze and more than 9 times that of backdoor sea breeze, which highlights the impact of sea breeze types on wind power.
Floating offshore wind turbines (FOWTs) can be used to exploit the enormous wind energy present over deep waters. Numerous studies have examined the dynamics of FOWTs, but few have focused on validating numerical results with experimental results, particularly for a deep draught FOWT in regions with frequent tropical storms. For this study, we developed a computer code and conducted experiments with a scale model to validate the simulation results. The computer code was first verified by comparing the results with those of the International Energy Agency Wind Task 23. Numerical simulations were implemented in both the frequency domain and the time domain. A comparison of the numerical and experimental results of the scale model in high waves showed good agreement. The flexibility of blades and the tower did not observably affect the motion of the deep draft spar-type FOWT. Therefore, it can be ignored in the preliminary design. The pitch motion of the scale model was within 1˚. Therefore, the spar-type FOWT may be an effective power source for regions with frequent tropical storms.
The Taiwan Strait contains a vast potential for wind energy. However, the power grid balance is challenging due to wind energy’s uncertainty and intermittent nature. Wind speed forecasting reduces this risk, increasing the penetration rate. Machine learning (ML) models are adopted in this study for the short-term prediction of wind speed based on the complex nonlinear relationships among wind speed, terrain, air pressure, air temperature, and other weather conditions. Feature selection is crucial for ML modeling. Finding more valuable features in observations is the key to improving the accuracy of prediction models. The random forest method was selected because of its stability, interpretability, low computational cost, and immunity to noise, which helps maintain focus on investigating the essential features from vast data. In this study, several new exogenous features were found on the basis of physics and the spatiotemporal correlation of surrounding data. Apart from the conventional input features used for wind speed prediction, such as wind speed, wind direction, air pressure, and air temperature, new features were identified through the feature importance of the random forest method, including wave height, air pressure difference, air-sea temperature difference, and hours and months, representing the periodic components of time series analysis. The air–sea temperature difference is proposed to replace the wind speed difference to represent atmosphere stability due to the availability and adequate accuracy of the data. A random forest and an artificial neural network model were created to investigate the effectiveness and generality of these new features. Both models are superior to persistence models and models using only conventional features. The random forest model outperformed all models. We believe that time-consuming and tune-required sophisticated models may also benefit from these new features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.