In clinical practice, prolonged occlusion of main arteries causes accumulation of metabolic waste and lactate. Reperfusion of blood flow is usually accompanied by circulatory shock. This study investigates the molecular mechanisms responsible for acidosis-induced hypotension and proposes therapeutic strategies for improving hemodynamic stability following ischemia-reperfusion acidosis. Vasomotor function of aortic rings was studied after cumulative addition of HCl in organ chambers (pH 7.4-7.0). Cultured vascular smooth muscle cells (VSMCs) were exposed to acidic buffer, and intracellular Ca levels were determined with Fluo3-AM. In an in vivo experiment, rat aorta was cross-clamped for 45 min and followed by declamping. Hemodynamic changes were measured in the presence and absence of an ATP-sensitive K channel (KATP channel) antagonist PNU37883A (3 mg/kg). Acidosis induced vasorelaxation in a dose-dependent manner, which was significantly attenuated by a KATP antagonist glibenclamide. Inhibition of KATP channel increased intracellular Ca load in the cultured VSMCs. Pretreatment with PNU37883A significantly attenuated systemic hypotension following reperfusion. However, systemic antagonism of KATP channel significantly increased the overall mortality. Recording of electrocardiogram showed progressive development of bradyarrhythmia with ST-segment elevation in animals pretreated with PNU37883A before reperfusion. We demonstrate that acidosis-induced vasodilation is, in part, mediated by the activation of KATP channels through reduction of intracellular Ca in VSMCs. However, systemic antagonism of KATP channel significantly increases the overall mortality secondary to the development of cardiac dysrhythmia in animals with profound experimental metabolic acidosis, suggesting that activation of KATP channel is a protective response during reperfusion acidosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.