Abstract-In this paper, a simple method and structure to design a dual-band bandpass filter (BPF) by using a dual feeding structure and embedded uniform impedance resonator (UIR) is presented. In this structure, two passbands can be designed individually and several transmission zeros can be created to improve the band selectivity and stopband performance. The first passband is determined by the dual feeding structure and the second passband is determined by the UIR. Moreover, by using the inter coupling in the UIR, the performance of the second passband can be easily tuned without degrading the first passband. In order to verify the design concept, two filter
Abstract-In this paper, design and fabrication of a quadband microstrip bandpass filter (BPF) using multi-layered stepped impedance resonators (SIRs) structure is proposed. One pair of SIR on the top layer is designed to operate at the 1st and 3rd passbands (1.56/3.57 GHz), and the other pair is at 2nd and 4th passbands (2.42/5.23 GHz) by tuning the impedance and length ratios of the SIRs. In order to find the desired coupling location between the SIRs located on different layers and the input/output (I/O) lines, the voltage, current and power wave on the I/O lines are analyzed. It is verified that the proposed quad-band filter has good passband performances with an excellent isolation between adjacent bands for GPS, WLAN, and WiMAX applications.
Abstract-This paper proposes a novel compact dual-band bandpass filter (BPF) using four spiral resonators for application in GSM and IEEE 802.11b WLANs for the first time. Since the two passbands can be tuned individually, the filter has more design freedoms. The symmetry coupling structure is realized to achieve a isolation higher than 30 dB between the lower and higher passbands. The full-wave simulator IE3D is used to design the spiral resonators and calculate the coupling coefficients of the basic coupling structures. The designed BPF is fabricated and measured. Good agreement between the simulated and measured results verifies our design concept.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.