Secondary converted waves from receiver functions are highly sensitive to physical properties below the Earth's surface. When modeled properly, the waveforms of converted waves offer direct constraints on the impedance contrast, depth, and P‐to‐S velocity ratio pertaining to sedimentary, crustal and mantle interfaces. In this study we introduce a nonlinear waveform inversion algorithm that matches the first 5 s of receiver functions recorded in the Alberta Basin within the Western Canada Sedimentary Basin (WCSB). Our algorithm searches for the optimal thickness of the sedimentary cover and shear velocities of appropriately selected layers within and below it. Combining inversions with forward simulations, we determine the supracrustal stratigraphy from 80 regional broadband seismic stations in the WCSB. The inverted models show east tapering sedimentary layers with their thicknesses ranging from ∼6 km beneath the foothills of the Canadian Rocky Mountains to 3–4 km beneath the Alberta Basin. This finding is consistent with the sedimentary strata determined from regional well‐logging data. The sedimentary layer contains low velocity zones of variable thicknesses and amplitudes that, depending on the locations, may be caused by mechanisms involving deposition, composition or deformation history. Our shear velocity models near the top of the basement complement the existing sonic‐logs or single component seismic data and offer new constraints on the subsidence history of the WCSB. The resolved range of depths (0–14 km) effectively bridges the gap between the vertical scales of well logging (0–6 km) and those of traditional broadband analysis (>10 km) involving receiver functions and surface waves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.