We present the cosmological implications from final measurements of clustering using galaxies, quasars, and Lyα forests from the completed Sloan Digital Sky Survey (SDSS) lineage of experiments in large-scale structure. These experiments, composed of data from SDSS, SDSS-II, BOSS, and eBOSS, offer independent measurements of baryon acoustic oscillation (BAO) measurements of angular-diameter distances and Hubble distances relative to the sound horizon, r d , from eight different samples and six measurements of the growth rate parameter, f σ 8 , from redshift-space distortions (RSD). This composite sample is the most constraining of its kind and allows us to perform a comprehensive assessment of the cosmological model after two decades of dedicated spectroscopic observation. We show that the BAO data alone are able to rule out dark-energy-free models at more than eight standard deviations in an extension to the flat, ΛCDM model that allows for curvature. When combined with Planck Cosmic Microwave Background (CMB) measurements of temperature and polarization, under the same model, the BAO data provide nearly an order of magnitude improvement on curvature constraints relative to primary CMB constraints alone. Independent of distance measurements, the SDSS RSD data complement weak lensing measurements from the Dark Energy Survey (DES) in demonstrating a preference for a flat ΛCDM cosmological model when combined with Planck measurements. The RSD and lensing measurements indicate a growth rate that is consistent with predictions from Planck temperature and polarization data and with General Relativity. When combining the results of SDSS BAO and RSD, Planck, Pantheon Type Ia supernovae (SNe Ia), and DES weak lensing and clustering measurements, all multiple-parameter extensions remain consistent with a ΛCDM model. Regardless of cosmological model, the precision on each of the three ΛCDM parameters, Ω Λ , H 0 , and σ 8 , remains at roughly 1%, showing changes of less than 0.6% in the central values between models. In a model that allows for free curvature and a time-evolving equation of state for dark energy, the combined samples produce a constraint Ω k = −0.0023 ± 0.0022. The dark energy constraints lead to w 0 = −0.912 ± 0.081 and w a = −0.48 +0.36 −0.30 , corresponding to an equation of state of w p = −1.020 ± 0.032 at a pivot redshift z p = 0.29 and a Dark Energy Figure of Merit of 92. The inverse distance ladder measurement under this model yields H 0 = 68.20 ± 0.81 km s −1 Mpc −1 , remaining in tension with several direct determination methods; the BAO data allow Hubble constant estimates that are robust against the assumption of the cosmological model. In addition, the BAO data allow estimates of H 0 that are independent of the CMB data, with similar central values and precision under a ΛCDM model. Our most constraining combination of data gives the upper limit on the sum of neutrino masses at m ν < 0.111 eV (95% confidence). Finally, we consider the improvements in cosmology constraints over the last decade by...
In a six-year program started in July 2014, the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) will conduct novel cosmological observations using the BOSS spectrograph at Apache Point Observatory. These observations will be conducted simultaneously with the Time Domain Spectroscopic Survey (TDSS) designed for variability studies and the Spectroscopic Identification of eROSITA Sources (SPIDERS) program designed for studies of X-ray sources. In particular, eBOSS will measure with percent-level precision the distance-redshift relation with baryon acoustic oscillations (BAO) in the clustering of matter. eBOSS will use four different tracers of the underlying matter density field to vastly expand the volume covered by BOSS and map the large-scale-structures over the relatively unconstrained redshift range 0.6 < z < 2.2. Using more than 250,000 new, spectroscopically confirmed luminous red galaxies at a median redshift z = 0.72, we project that eBOSS will yield measurements of the angular diameter distance d A (z) to an accuracy of 1.2% and measurements of H(z) to 2.1% when combined with the z > 0.6 sample of BOSS galaxies. With ∼ 195, 000 new emission line galaxy redshifts, we expect BAO measurements of d A (z) to an accuracy of 3.1% and H(z) to 4.7% at an effective redshift of z = 0.87. A sample of more than 500,000 spectroscopically-confirmed quasars will provide the first BAO distance measurements over the redshift range 0.9 < z < 2.2, with expected precision of 2.8% and 4.2% on d A (z) and H(z), respectively. Finally, with 60,000 new quasars and reobservation of 60,000 BOSS quasars, we will obtain new Lyα forest measurements at redshifts z > 2.1; these new data will enhance the precision of d A (z) and H(z) at z > 2.1 by a factor of 1.44 relative to BOSS. Furthermore, eBOSS will provide improved tests of General Relativity on cosmological scales through redshift-space distortion (RSD) measurements, improved tests for non-Gaussianity in the primordial density field, and new constraints on the summed mass of all neutrino species. Here, we provide an overview of the cosmological goals, spectroscopic target sample, demonstration of spectral quality from early data, and projected cosmological constraints from eBOSS. eBOSS 3 confidence, where w is the ratio of pressure to energy density for dark energy. Thus, current observations are generally consistent with the simplest picture where dark energy is described completely by Einstein's cosmological constant (Λ).New precise observations can unravel the origin of the accelerating universe; specifically, to determine if cosmic acceleration is caused by deviations in General Relativity (GR) on large scales or by a new form of (dark) energy. It is possible to decouple scenarios of acceleration that require dark energy from those that require modifications to GR by independently probing both cosmic expansion history and the structure growth rate. Four primary observational techniques are generally accepted as the most powerful toward obtaining that goal (e.g. Albrech...
This paper documents the 16th data release (DR16) from the Sloan Digital Sky Surveys (SDSS), the fourth and penultimate from the fourth phase (SDSS-IV). This is the first release of data from the Southern Hemisphere survey of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2); new data from APOGEE-2 North are also included. DR16 is also notable as the final data release for the main cosmological program of the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and all raw and reduced spectra from that project are released here. DR16 also includes all the data from the Time Domain Spectroscopic Survey and new data from the SPectroscopic IDentification of ERosita Survey programs, both of which were co-observed on eBOSS plates. DR16 has no new data from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey (or the MaNGA Stellar Library “MaStar”). We also preview future SDSS-V operations (due to start in 2020), and summarize plans for the final SDSS-IV data release (DR17).
We present measurements of the Baryon Acoustic Oscillation (BAO) scale in redshift-space using the clustering of quasars. We consider a sample of 147,000 quasars from the extended Baryon Oscillation Spectroscopic Survey (eBOSS) distributed over 2044 square degrees with redshifts 0.8 < z < 2.2 and measure their spherically-averaged clustering in both configuration and Fourier space. Our observational dataset and the 1400 simulated realizations of the dataset allow us to detect a preference for BAO that is greater than 2.8σ. We determine the spherically averaged BAO distance to z = 1.52 to 3.8 per cent precision: D V (z = 1.52) = 3843 ± 147 (r d /r d,fid ) Mpc. This is the first time the location of the BAO feature has been measured between redshifts 1 and 2. Our result is fully consistent with the prediction obtained by extrapolating the Planck flat ΛCDM best-fit cosmology. All of our results are consistent with basic large-scale structure (LSS) theory, confirming quasars to be a reliable tracer of LSS, and provide a starting point for numerous cosmological tests to be performed with eBOSS quasar samples. We combine our result with previous, independent, BAO distance measurements to construct an updated BAO distance-ladder. Using these BAO data alone and marginalizing over the length of the standard ruler, we find Ω Λ > 0 at 6.6σ significance when testing a ΛCDM model with free curvature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.