Cornstalk cellulose was liquefied in sub-and supercritical ethanol using an autoclave at 320 °C with 160 mL of ethanol. The effects of reaction time on esters formation during cellulose liquefaction were investigated. The yield of esters was 10.0% at 30 min, increasing to 19.1% after 60 min. Ethanol favored esters formation from cellulose liquefaction. The liquid products at different reaction time were analyzed by FT-IR and GC/MS. The results showed that many free radicals were produced in sub-/supercritical ethanol interactions. Cellulose was converted to active cellulose, which was transformed into large molecular acids by dehydration, decomposition, ring-opening reactions, isomerization, and aldol condensation, and then formed ethyl esters such as ethyl lactate by esterification. In addition, ethyl esters were decomposed to acids, alcohols, and other compounds with increasing reaction time in the presence of ethanol free radicals. Using these results, a reaction network for the formation of ethyl esters from cellulose in sub-and supercritical ethanol was proposed.
Hydroxyl radicals (HO•) and hydrogen radicals (H•) produced from sub/supercritical ethanol have an obvious contribution on cellulose liquefaction for bio-oil production. Salicylic acid was employed as the HO• trap and CCl4 was employed as the H• trap to investigate the role of HO• and H• on the formation pathways of dominant chemical components in bio-oil during cellulose liquefaction in sub/supercritical ethanol (mostly ketones and esters). The yield of bio-oil decreased from 24.7% to 20.7% with the addition of CCl4, while the bio-oil yield increased from 29.3% to 47.9% with the addition of salicylic acid. Gas chromatography/mass spectrometry results showed that the yields of ketones, esters, and phenols in the bio-oil were 22.3%, 8.8%, and 4.7%, respectively, without salicylic acid or CCl4. The highest yields of esters and phenols increased to 21.6% and 36.9%, respectively, in the presence of salicylic acid. The yield of ketones decreased to 14.1%. Experimental data indicated that the cleavage of C-O-C and C-C bonds in the cornstalk cellulose initially generated many active cellulose fragments. Then, platform chemicals were formed from these fragments through aromatization, isomerization, aldol condensation, Baeyer-Villiger oxidation, and trans-Diels-Alder ringopening with the redox of HO• and H•.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.