The soluble complexes formed between hydrolyzed soybean protein and calcium at pH 7.4 were investigated using dialysis, gel chromatography, and Fourier transform infrared spectrometry (FTIR). The results demonstrate that the amount of calcium bound was significantly different for soybean protein hydrolysates obtained using the proteases neutrase, flavourzyme, protease M, and pepsin. Maximum levels of calcium binding (66.9 mg/g) occurred with hydrolysates produced using protease M. Peptide fragments exhibiting high calcium binding capacity had molecular weights of either 14.4 kDa or 8 to 9 kDa, and the calcium binding capacity was linearly correlated with carboxyl group content (R(2)= 0.8204). FTIR experiments revealed that upon binding calcium, the amide I band underwent a shift to lower wave numbers. A wide, intense Ca-O absorption band also appeared between 400 and 100 cm(-1) in the far-infrared spectrum. The width and intensity of this band increased after treatment of samples with glutaminase. The amount of bound calcium was related to both the molecular weight of the peptides and to the carboxyl group content, and the most likely sites for calcium binding are the carboxyl groups of Asp and Glu.
This study analyzed the aggregation mode of polypeptides in protein particles of soy milk by using ultracentrifugation, gel filtration, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The results show that the protein particles in soy milk were mainly formed by various complex protein aggregates. These protein aggregates were mainly composed of the basic and acidic polypeptides of glycinin (11S), which interact with each other via disulfide bonds, and a very small amount of the disulfide-linked alpha' and alpha subunits of beta-conglycinin (7S). Moreover, the protein aggregates and a part of monomeric subunits of 7S and 11S form protein particles through non-covalent interactions, especially hydrophobic interactions and hydrogen bonds. It is suggested that the polymerized basic polypeptides should be located inside the protein particles, whereas the acidic polypeptides of 11S, alpha' and alpha subunits are located outside them.
Soybean protein hydrolysates (SPHs) bind with calcium, forming soluble SPH-calcium complexes via the carboxyl groups of glutamic and aspartic acid residues. However, their effect on calcium uptake is still unclear. In this study, Caco-2 cells were used to estimate the effect of SPH-calcium complexes with different molecular weights on calcium uptake in vitro. The changes in intracellular calcium ion concentration were measured by Fura-2 loading and expressed in fluorescence intensity. SPH-calcium complexes could promote calcium uptake. Improved fluorescence intensity was significantly different in SPH-calcium complexes (10 to 30 kDa), SPH-calcium complexes (3 to 10 kDa), and SPH-calcium complexes (1 to 3 kDa). The maximum levels of relative fluorescence intensity (18.3) occurred with SPH-calcium complexes (10 to 30 kDa). The effect of SPH-calcium complexes (10 to 30 kDa) on Ca(2+) increase was determined to be concentration dependent in the range of 0.5 to 4 mg/mL. Our results indicate that soybean protein itself might be responsible for promoting calcium absorption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.