The high penetration rate of distributed generations (DGs) makes the distribution network’s fault characteristics complex and variable, which limits the application of traditional current differential protection (CDP) in active distribution networks. According to the amplitude and phase characteristics analysis of positive-sequence current fault components (PSCFCs) in the active distribution network, a novel CDP method based on the adaptive phase angle compensation coefficient is proposed. The method improves the traditional CDP by introducing an adaptive phase angle compensation coefficient, which adaptively compensates the phase of PSCFCs on the DG side according to the phase difference and amplitude ratio of PSCFCs on both sides of the protected feeder. To effectively cope with the negative impact of unmeasurable load branches on protection reliability, the polarity information of the action impedance is used to construct an auxiliary criterion. The effectiveness of the proposed protection scheme is verified in the PSCAD/EMTDC. Compared with the traditional CDP, this scheme can meet the protection needs of active distribution networks under various fault scenarios with high sensitivity and reliability. The proposed method can withstand high fault resistance and large time synchronization errors, and it can still trip correctly under 150 Ω fault resistance or 4.6 ms time synchronization errors.
The high penetration of inverter-based distributed generations (IBDGs) leads to traditional distribution networks’ complex and variable fault characteristics. Traditional passive detection protection methods can hardly meet the stability and reliability requirements. To solve this problem, an injection harmonic current differential protection (IHCDP) scheme based on the idea of control-protection synergy is proposed in this paper. By analyzing the circuit structure, control strategy, low-voltage-ride-through characteristics of IBDGs, and short-circuit currents provided by IBDGs, an injection-control strategy of characteristic harmonic currents (CHCs) based on the d-axis and q-axis is proposed. According to the change of short-circuit currents provided by the IBDG, the amplitude of CHCs is adaptively corrected to strengthen the fault characteristics and ensure that the distribution network harmonic injection protocols are always satisfied. An IHCDP criterion based on the distortion rate of the negative-sequence component of CHCs is proposed by analyzing the fault characteristics of the CHCs after injection. To effectively eliminate the dead-zone problem during symmetrical short-circuit faults, the proposed IHCDP utilizes the distortion rate of A-phase CHCs. The feasibility of the proposed protection scheme is demonstrated by the theoretical analysis and simulation results in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.