Maillard reaction products (MRPs) of soybean protein isolate (SPI) and sugars (glucose and maltose) were prepared by heating in the aqueous dispersion at 95°C for 15 min with ultrasonic pretreatment (ultrasonic power of 200 W) for 20 min. Effect of ultrasonic pretreatment on physicochemical characteristics and rheological properties of SPI/sugar MRPs was investigated. SPI/sugar MRPs prepared with ultrasonic pretreatment had higher degree of glycation (DG), lower browning and less compact tertiary conformation than that with non-ultrasonic pretreatment. Surface hydrophobicity (H 0 ), particle size and rheological properties were measured by fluorescence spectrophotometry, laser particle size analysis and dynamic oscillatory rheometry, respectively. Glycation reduced H 0 and particle size as well as weaken the gel network formed by the acidification of GDL. However, ultrasound increased H 0 and decreased particle size. This is desirable for the formation of acid-induced gel structure. The ultrasonic pretreatments reduced/eliminate the weakening effect of glycation on the gel network of SPI/sugar MRPs, and even improved the gel properties.
The effect of mixture and conjugation with maltodextrin (MD) in aqueous solution on the structural and physicochemical properties of soya bean protein isolate (SPI) was investigated. Although the mixing of MD would not change the distribution of secondary structure and tertiary conformation of SPI, the protein aggregation was promoted through hydrophobic interaction, which resulted in the decrease in solubility and the improvement of gel strength and water holding capacity (WHC) of SPI/MD mixture. However, glycosylation decreased a-helix and increased b-structure. The bathochromic shift of the fluorescence emission maximum wavelength for SPI/MD conjugates was promoted, resulting in less compact tertiary conformation. These structural modifications might be the reason for the changes in the physicochemical properties of conjugates. After glycosylation, the surface hydrophobicity and solubility were increased, the average particle size was decreased, and the gelation properties were weakened including gel strength and WHC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.