Heterointerface engineering can be used to develop excellent catalysts through electronic coupling effects between different components or phases. As one kind of promising Pt‐free electrocatalysts for hydrogen evolution reaction (HER), pure‐phased metal phosphide exhibits the unfavorable factor of strong or weak H*‐adsorption performance. Here, 6 nm wall‐thick Ni2P–NiP2 hollow nanoparticle polymorphs combining metallic Ni2P and metalloid NiP2 with observable heterointerfaces are synthesized. It shows excellent catalytic performance toward the HER, requiring an overpotential of 59.7 mV to achieve 10 mA cm−2 with a Tafel slope of 58.8 mV dec−1. Density functional theory calculations verify electrons' transfer from P to Ni at the heterointerfaces, which decreases the absolute value of H* adsorption energy and simultaneously enhance electronic conductivity. That is, the heterojunctions balance the metallic Ni2P and the metalloid NiP2 to form an optimized phosphide polymorph catalyst for the HER. Furthermore, this polymorph combination is used with NiFe‐LDH nanosheets to form an alkaline electrolyzer. It shows highly desirable electrochemical properties, which can reach 10 mA cm−2 in 1 m KOH at 1.48 V and be driven by an AAA battery with a nominal voltage of 1.5 V. The work about interfacial charge transfer might provide an insight into designing excellent polymorph catalysts.
The development of tin (Sn)‐based perovskite solar cells (PSCs) is hindered by their lower power conversion efficiency and poorer stability compared to the lead‐based ones, which arise from the easy oxidation of Sn2+ to Sn4+. Herein, phenylhydrazine hydrochloride (PHCl) is introduced into FASnI3 (FA = NH2CH NH2+) perovskite films to reduce the existing Sn4+ and prevent the further degradation of FASnI3, since PHCl has a reductive hydrazino group and a hydrophobic phenyl group. Consequently, the device achieves a record power conversion efficiency of 11.4% for lead‐free PSCs. Besides, the unencapsulated device displays almost no efficiency reduction in a glove box over 110 days and shows efficiency recovery after being exposed to air, due to a proposed self‐repairing trap state passivation process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.