Abstract:The Traditional Chinese Medicine herbs Pollen Typhae and Pollen Typhae Carbonisatus have been used as a hemostatic medicine promoting blood clotting for thousands of years. In this study, a reliable, highly sensitive method based on LC-MS/MS has been developed for differentiation of the heating products of total flavonoids in Pollen Typhae (FPT-N). Twenty three peaks were detected and 18 peaks have been structurally identified by comparing retention times, high resolution mass spectrometry data, and fragment ions with those of the reference substances and/or literature data. Additionally, 15 compounds have been quantified by multiple reaction monitoring in the negative ionization mode. It was found that the contents of the characterized compounds differed greatly from each other in FPT-N samples. Among them, the content of huaicarbon B OPEN ACCESSMolecules 2015, 20 18353 significantly increased at first, while it decreased after heating for 25 min, which could be considered as the characteristic component for distinguishing FPT-N. The present study provided an approach to rapidly distinguish the differences of FPT-N samples. In addition, the actively summarized characteristic fragmentation might help deducing the structure of unknown flavonols compounds. Furthermore, transformation rules of flavonoids during the heating process in carbonisatus development could contribute to hemostatic therapeutic component exploration.
SummaryTaxus stem barks can be used for extraction of paclitaxel. However, the composition of taxoids across the whole stem and the stem tissue‐specificity of paclitaxel biosynthesis‐related enzymes remain largely unknown. We used cultivated Taxus media trees for analyses of the chemical composition and protein of major stem tissues by an integrated metabolomic and proteomic approach, and the role of TmMYB3 in paclitaxel biosynthesis was investigated. The metabolomic landscape analysis showed differences in stem tissue‐specific accumulation of metabolites. Phytochemical analysis revealed that there is high accumulation of paclitaxel in the phloem. Ten key enzymes involved in paclitaxel biosynthesis were identified, most of which are predominantly produced in the phloem. The full‐length sequence of TmMYB3 and partial promoter sequences of five paclitaxel biosynthesis‐related genes were isolated. Several MYB recognition elements were found in the promoters of TBT, DBTNBT and TS. Further in vitro and in vivo investigations indicated that TmMYB3 is involved in paclitaxel biosynthesis by activating the expression of TBT and TS. Differences in the taxoid composition of different stem tissues suggest that the whole stem of T. media has potential for biotechnological applications. Phloem‐specific TmMYB3 plays a role in the transcriptional regulation of paclitaxel biosynthesis, and may explain the phloem‐specific accumulation of paclitaxel.
BackgroundTaxol is an efficient anticancer drug; however, the accumulation of taxoids can vary hugely among Taxus species. The mechanism underlying differential accumulation of taxoids is largely unknown. Thus, comparative analysis of the transcriptomes in three Taxus species, including T. media, T. mairei and T. cuspidata, was performed.ResultsKEGG enrichment analysis revealed that the diterpenoid biosynthesis and cytochrome P450 pathways were significantly enriched in different comparisons. Differential expressions of these taxol biosynthesis related genes might be a potential explanation for the interspecific differential accumulation of taxol and its derivatives. Besides, the sequences of several MEP pathway-associated genes, such as DXS, DXR, MCT, CMK, MDS, HDS, HDR, IPPI, and GGPPS, were re-assembled based on independent transcriptomes from the three Taxus species. Phylogenetic analysis of these MEP pathway-associated enzymes also showed a high sequence similarity between T. media and T. cuspidata. Moreover, 48 JA-related transcription factor (TF) genes, including 10 MYBs, 5 ERFs, 4 RAPs, 3 VTCs, and 26 other TFs, were analyzed. Differential expression of these JA-related TF genes suggested distinct responses to exogenous JA applications in the three Taxus species.ConclusionsOur results provide insights into the expression pattern and sequence similarity of several taxol biosynthesis-related genes in three Taxus species. The data give us an opportunity to reveal the mechanism underlying the variations in the taxoid contents and to select the highest-yielding Taxus species.Electronic supplementary materialThe online version of this article (10.1186/s12870-019-1645-x) contains supplementary material, which is available to authorized users.
BackgroundTrees of the genus Taxus are highly valuable medicinal plants with multiple pharmacological effects on various cancer treatments. Paclitaxel from Taxus trees is an efficient and widely used anticancer drug, however, the accumulation of taxoids and other active ingredients can vary greatly among Taxus species. In our study, the metabolomes of three Taxus species have been investigated.ResultsA total of 2246 metabolites assigned to various primary and secondary metabolic pathways were identified using an untargeted approach. Analysis of differentially accumulated metabolites identified 358 T. media-, 220 T. cuspidata-, and 169 T. mairei-specific accumulated metabolites, respectively. By searching the metabolite pool, 7 MEP pathway precursors, 11 intermediates, side chain products and derivatives of paclitaxel, and paclitaxel itself were detected. Most precursors, initiated intermediates were highly accumulated in T. mairei, and most intermediate products approaching the end point of taxol biosynthesis pathway were primarily accumulated in T. cuspidata and T. media. Our data suggested that there were higher-efficiency pathways to paclitaxel in T. cuspidata and T. media compared with in T. mairei. As an important class of active ingredients in Taxus trees, a majority of flavonoids were predominantly accumulated in T. mairei rather than T. media and T. cuspidata. The variations in several selected taxoids and flavonoids were confirmed using a targeted approach.ConclusionsSystematic correlativity analysis identifies a number of metabolites associated with paclitaxel biosynthesis, suggesting a potential negative correlation between flavonoid metabolism and taxoid accumulation. Investigation of the variations in taxoids and other active ingredients will provide us with a deeper understanding of the interspecific differential accumulation of taxoids and an opportunity to accelerate the highest-yielding species breeding and resource utilization.
LNF can be an effective means for treating RSs in patients with GERD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.