Named Entity Recognition (NER) aims to identify the pre-defined entities from the unstructured text. Compared with English NER, Chinese NER faces more challenges: the ambiguity problem in entity boundary recognition due to unavailable explicit delimiters between Chinese characters, and the out-of-vocabulary (OOV) problem caused by rare Chinese characters. However, two important features specific to the Chinese language are ignored by previous studies: glyphs and phonetics, which contain rich semantic information of Chinese. To overcome these issues by exploiting the linguistic potential of Chinese as a logographic language, we present MPM-CNER (short for Multi-modal Pretraining Model for Chinese NER), a model for learning multi-modal representations of Chinese semantics, glyphs, and phonetics, via four pretraining tasks: Radical Consistency Identification (RCI), Glyph Image Classification (GIC), Phonetic Consistency Identification (PCI), and Phonetic Classification Modeling (PCM). Meanwhile, a novel cross-modality attention mechanism is proposed to fuse these multimodal features for further improvement. The experimental results show that our method outperforms the state-of-the-art baseline methods on four benchmark datasets, and the ablation study also verifies the effectiveness of the pre-trained multi-modal representations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.