Vitis vinifera plants are disease-susceptible while Vitis pseudoreticulata plants are disease-resistant; however, the molecular mechanism remains unclear. In this study, the single-stranded DNA- and RNA-binding protein gene Whirly (VvWhy1 and VpWhy1) were cloned from V. vinifera “Cabernet Sauvignon” and V. pseudoreticulata “HD1”. VvWhy1 and VpWhy1 promoter sequences (pVv and pVp) were also isolated; however, the identity of the promoter sequences was far lower than that between the Why1 coding sequences (CDSs). Both Why1 gene sequences had seven exons and six introns, and they had a C-terminal Whirly conserved domain and N-terminal chloroplast transit peptide, which was then verified to be chloroplast localization. Transcriptional expression showed that VpWhy1 was strongly induced by Plasmopara viticola, while VvWhy1 showed a low expression level. Further, the GUS activity indicated pVp had high activity involved in response to Phytophthora capsici infection. In addition, Nicotiana benthamiana transiently expressing pVp::VvWhy1 and pVp::VpWhy1 enhanced the P. capsici resistance. Moreover, Why1, PR1 and PR10 were upregulated in pVp transgenic N. benthamiana leaves. This research presented a novel insight into disease resistance mechanism that pVp promoted the transcription of Why1, which subsequently regulated the expression of PR1 and PR10, further enhancing the resistance to P. capsici.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.