Building energy consumption prediction plays an important role in improving the energy utilization rate through helping building managers to make better decisions. However, as a result of randomness and noisy disturbance, it is not an easy task to realize accurate prediction of the building energy consumption. In order to obtain better building energy consumption prediction accuracy, an extreme deep learning approach is presented in this paper. The proposed approach combines stacked autoencoders (SAEs) with the extreme learning machine (ELM) to take advantage of their respective characteristics. In this proposed approach, the SAE is used to extract the building energy consumption features, while the ELM is utilized as a predictor to obtain accurate prediction results. To determine the input variables of the extreme deep learning model, the partial autocorrelation analysis method is adopted. Additionally, in order to examine the performances of the proposed approach, it is compared with some popular machine learning methods, such as the backward propagation neural network (BPNN), support vector regression (SVR), the generalized radial basis function neural network (GRBFNN) and multiple linear regression (MLR). Experimental results demonstrate that the proposed method has the best prediction performance in different cases of the building energy consumption.
For many multi-attribute decision-making (MADM) problems, linguistic variables are more convenient for people to express the attribute values. In this paper, a novel shadowed set-based method is proposed to deal with linguistic terms, where the linguistic term sets are symmetrical both in meaning and form. Firstly, to effectively express the linguistic variables, we develop a data-driven method to construct the shadowed set model for the linguistic terms. Secondly, the Pythagorean shadowed set is defined, and some theorems are subsequently explored. Thirdly, we propose the score function of the Pythagorean shadowed number and develop a new MADM method on the basis of the Pythagorean shadowed set. Finally, a case study of the supplier selection problem is provided to illustrate the effectiveness of the proposed method, and the superiority of our method is demonstrated by comparison analysis.
In the long-term contract transaction of Northeast Regional Power Market (NRPM), the competing objective is not generating unit outputs at some time interval, but the amount of electrical energy during some period. In this paper, the basic principles of security checking are studied based on the transferred power in the interface of tie-lines, through which the security-constrained interfaces will be analyzed and simplified, and the function of security checking for the long-term contract transaction will be improved greatly. The feasibility and effectiveness have been proved by the practical application in NR1PM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.