Introducing polarization field of piezoelectric materials is an effective strategy to improve photocatalytic performance. In this study, a new type of BaTiO3/CuO heterostructure catalyst was designed and synthesized to achieve high piezo-photocatalytic activity through the synergy of heterojunction and piezoelectric effect. The BaTiO3/CuO heterostructure shows a significantly enhanced piezo-photocatalytic degradation efficiency of organic pollutants compared with the individual BaTiO3 nanowires (NWs) and CuO nanoparticles (NPs). Under the co-excitation of ultrasonic vibration and ultraviolet radiation, the optimal degradation reaction rate constant k of polarized BaTiO3/CuO heterostructure on methyl orange (MO) dye can reach 0.05 min−1, which is 6.1 times of photocatalytic rate and 7 times of piezocatalytic rate. The BaTiO3/CuO heterostructure with remarkable piezo-photocatalytic behavior provides a promising strategy for the development of high-efficiency catalysts for wastewater purification, and it also helps understand the coupling mechanism between piezoelectric effect and photocatalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.